Colin J Carlson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/938277/publications.pdf

Version: 2024-02-01

201385 168136 3,638 69 27 citations h-index papers

g-index 116 116 116 4337 docs citations times ranked citing authors all docs

53

#	Article	IF	CITATIONS
1	Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Neglected Tropical Diseases, 2019, 13, e0007213.	1.3	484
2	Climate change increases cross-species viral transmission risk. Nature, 2022, 607, 555-562.	13.7	361
3	Compound climate risks in the COVID-19 pandemic. Nature Climate Change, 2020, 10, 586-588.	8.1	201
4	Parasite biodiversity faces extinction and redistribution in a changing climate. Science Advances, 2017, 3, e1602422.	4.7	194
5	The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Nature Microbiology, 2019, 4, 1337-1343.	5. 9	153
6	Misconceptions about weather and seasonality must not misguide COVID-19 response. Nature Communications, 2020, 11, 4312.	5.8	124
7	A global parasite conservation plan. Biological Conservation, 2020, 250, 108596.	1.9	109
8	Going through the motions: incorporating movement analyses into disease research. Ecology Letters, 2018, 21, 588-604.	3.0	107
9	An Ecological Assessment of the Pandemic Threat of Zika Virus. PLoS Neglected Tropical Diseases, 2016, 10, e0004968.	1.3	101
10	Making ecological models adequate. Ecology Letters, 2018, 21, 153-166.	3.0	100
11	Global estimates of mammalian viral diversity accounting for host sharing. Nature Ecology and Evolution, 2019, 3, 1070-1075.	3.4	94
12	Parasite vulnerability to climate change: an evidence-based functional trait approach. Royal Society Open Science, 2017, 4, 160535.	1.1	93
13	Paradigms for parasite conservation. Conservation Biology, 2016, 30, 724-733.	2.4	90
14	Spores and soil from six sides: interdisciplinarity and the environmental biology of anthrax (<scp><i>Bacillus anthracis</i></scp>). Biological Reviews, 2018, 93, 1813-1831.	4.7	74
15	What would it take to describe the global diversity of parasites?. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201841.	1.2	70
16	The science of the host–virus network. Nature Microbiology, 2021, 6, 1483-1492.	5.9	59
17	Warming temperatures could expose more than 1.3Åbillion new people to Zika virus risk by 2050. Global Change Biology, 2021, 27, 84-93.	4.2	57
18	Ecological metrics and methods for GPS movement data. International Journal of Geographical Information Science, 2018, 32, 2272-2293.	2.2	52

#	Article	IF	CITATIONS
19	embarcadero: Species distribution modelling with Bayesian additive regression trees in $\langle scp \rangle r \langle scp \rangle$. Methods in Ecology and Evolution, 2020, 11, 850-858.	2.2	52
20	Consensus and conflict among ecological forecasts of Zika virus outbreaks in the United States. Scientific Reports, 2018, 8, 4921.	1.6	50
21	The future of zoonotic risk prediction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200358.	1.8	47
22	Optimising predictive models to prioritise viral discovery in zoonotic reservoirs. Lancet Microbe, The, 2022, 3, e625-e637.	3.4	45
23	From PREDICT to prevention, one pandemic later. Lancet Microbe, The, 2020, 1, e6-e7.	3.4	44
24	Species distribution models are inappropriate for COVID-19. Nature Ecology and Evolution, 2020, 4, 770-771.	3.4	41
25	Beyond Infection: Integrating Competence into Reservoir Host Prediction. Trends in Ecology and Evolution, 2020, 35, 1062-1065.	4.2	40
26	The Ecology of Pathogen Spillover and Disease Emergence at the Human-Wildlife-Environment Interface. Advances in Environmental Microbiology, 2018, , 267-298.	0.1	37
27	Overselling wildlife trade bans will not bolster conservation or pandemic preparedness. Lancet Planetary Health, The, 2020, 4, e215-e216.	5.1	36
28	Gauging support for macroecological patterns in helminth parasites. Global Ecology and Biogeography, 2018, 27, 1437-1447.	2.7	33
29	Assessing the risk of humanâ€toâ€wildlife pathogen transmission for conservation and public health. Ecology Letters, 2022, 25, 1534-1549.	3.0	33
30	Trends and Opportunities in Tick-Borne Disease Geography. Journal of Medical Entomology, 2021, 58, 2021-2029.	0.9	23
31	The Global Virome in One Network (VIRION): an Atlas of Vertebrate-Virus Associations. MBio, 2022, 13, e0298521.	1.8	23
32	Urban-adapted mammal species have more known pathogens. Nature Ecology and Evolution, 2022, 6, 794-801.	3.4	23
33	The More Parasites, the Better?. Science, 2013, 342, 1041-1041.	6.0	22
34	Tactics and Strategies for Managing Ebola Outbreaks and the Salience of Immunization. Computational and Mathematical Methods in Medicine, 2015, 2015, 1-9.	0.7	21
35	Lazarus ecology: Recovering the distribution and migratory patterns of the extinct Carolina parakeet. Ecology and Evolution, 2017, 7, 5467-5475.	0.8	20
36	A cross-validation-based approach for delimiting reliable home range estimates. Movement Ecology, 2017, 5, 19.	1.3	20

#	Article	IF	CITATIONS
37	Mammal virus diversity estimates are unstable due to accelerating discovery effort. Biology Letters, 2022, 18, 20210427.	1.0	20
38	Testing predictability of disease outbreaks with a simple model of pathogen biogeography. Royal Society Open Science, 2019, 6, 190883.	1.1	19
39	Preparing for emerging infections means expecting new syndemics. Lancet, The, 2019, 394, 297.	6.3	18
40	Zygomorphic flowers have fewer potential pollinator species. Biology Letters, 2020, 16, 20200307.	1.0	18
41	Climate engineering needs a clean bill of health. Nature Climate Change, 2018, 8, 843-845.	8.1	17
42	Preparing international cooperation on pandemic prevention for the Anthropocene. BMJ Global Health, 2021, 6, e004254.	2.0	17
43	Solar geoengineering could redistribute malaria risk in developing countries. Nature Communications, 2022, 13, 2150.	5.8	17
44	Outbreak of Zika Virus Infections, Dominica, 2016. Emerging Infectious Diseases, 2017, 23, 1926-1927.	2.0	16
45	Data Proliferation, Reconciliation, and Synthesis in Viral Ecology. BioScience, 2021, 71, 1148-1156.	2.2	15
46	Parasite Collections: Overlooked Resources for Integrative Research and Conservation. Trends in Parasitology, 2018, 34, 637-639.	1.5	14
47	Plague risk in the western United States over seven decades of environmental change. Global Change Biology, 2022, 28, 753-769.	4.2	13
48	Estimating the extinction date of the thylacine with mixed certainty data. Conservation Biology, 2018, 32, 477-483.	2.4	12
49	Answering the right questions for policymakers on COVID-19. The Lancet Global Health, 2020, 8, e768-e769.	2.9	12
50	An agent-based model of school closing in under-vaccinated communities during measles outbreaks. Simulation, 2019, 95, 385-393.	1.1	9
51	Zika Virus Outbreak, Barbados, 2015–2016. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1857-1859.	0.6	9
52	A web app for population viability and harvesting analyses. Natural Resource Modelling, 2017, 30, .	0.8	8
53	Local extinctions of insular avifauna on the most remote inhabited island in the world. Journal of Ornithology, 2019, 160, 49-60.	0.5	8
54	Virus isolation data improve host predictions for New World rodent orthohantaviruses. Journal of Animal Ecology, 2022, 91, 1290-1302.	1.3	8

#	Article	IF	Citations
55	Don't gamble the COVID-19 response on ecological hypotheses. Nature Ecology and Evolution, 2020, 4, 1155-1155.	3.4	7
56	Present and future distribution of bat hosts of sarbecoviruses: implications for conservation and public health. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	7
57	The Mathematics of Extinction Across Scales: From Populations to the Biosphere. Mathematics of Planet Earth, 2019, , 225-264.	0.1	6
58	A choice between two futures for pandemic recovery. Lancet Planetary Health, The, 2020, 4, e545-e546.	5.1	6
59	International law reform for One Health notifications. Lancet, The, 2022, 400, 462-468.	6.3	5
60	Commentary to: a cross-validation-based approach for delimiting reliable home range estimates. Movement Ecology, 2018, 6, 10.	1.3	4
61	Comment on "A global-scale ecological niche model to predict SARS-CoV-2 coronavirus infection rateâ€, author Coro. Ecological Modelling, 2020, 436, 109288.	1.2	4
62	Synzootics. Journal of Animal Ecology, 2021, 90, 2744-2754.	1.3	4
63	Georeferenced sighting and specimen occurrence data of the extinct Carolina Parakeet (Conuropsis) Tj ETQq1 1	. 0.784314 0.4	4 rgβT /Overlo
64	Identifying regions of risk to honey bees from Zika vector control in the USA. Journal of Apicultural Research, 2018, 57, 709-719.	0.7	3
65	An Agent-Based Model of School Closing in Under-Vacccinated Communities During Measles Outbreaks. , 2016, 2016, .		3
66	Reevaluating sighting models and moving beyond them to test and contextualize the extinction of the thylacine. Conservation Biology, 2018, 32, 1198-1199.	2.4	2
67	The two extinctions of the Carolina Parakeet Conuropsis carolinensis. Bird Conservation International, 0, , 1-8.	0.7	2
68	Is the New England medicinal leech (Macrobdella sestertia) extinct?. Biological Conservation, 2020, 243, 108495.	1.9	1
69	Towards a coordinated strategy for intercepting human disease emergence in Africa. Lancet Microbe, The, 2021, 2, e51-e52.	3.4	1