Nuala J Meyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9382498/publications.pdf

Version: 2024-02-01

119	8,615	41 h-index	84
papers	citations		g-index
134	134	134	15425
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Advancing precision medicine for acute respiratory distress syndrome. Lancet Respiratory Medicine, the, 2022, 10, 107-120.	10.7	83
2	Elevated Plasma Levels of Matrix Metalloproteinase-3 and Tissue-Inhibitor of Matrix Metalloproteinases-1 Associate With Organ Dysfunction and Mortality in Sepsis. Shock, 2022, 57, 41-47.	2.1	14
3	Single Nucleotide Variant in FAS Associates With Organ Failure and Soluble Fas Cell Surface Death Receptor in Critical Illness. Critical Care Medicine, 2022, 50, e284-e293.	0.9	3
4	Cytomegalovirus Latent Infection is Associated with an Increased Risk of COVID-19-Related Hospitalization. Journal of Infectious Diseases, 2022, 226, 463-473.	4.0	39
5	Clinical trial design during and beyond the pandemic: the I-SPY COVID trial. Nature Medicine, 2022, 28, 9-11.	30.7	17
6	A cortactin CTTN coding SNP contributes to lung vascular permeability and inflammatory disease severity in African descent subjects. Translational Research, 2022, 244, 56-74.	5.0	6
7	Innate lymphoid cells and COVID-19 severity in SARS-CoV-2 infection. ELife, 2022, 11, .	6.0	37
8	Pulmonary and Critical Care Considerations for e-Cigarette, or Vaping, Product Use-Associated Lung Injury. Chest, 2022, 162, 256-264.	0.8	8
9	Early Plasma Nuclear DNA, Mitochondrial DNA, and Nucleosome Concentrations Are Associated With Acute Kidney Injury in Critically Ill Trauma Patients., 2022, 4, e0663.		5
10	Signaling Through FcÎ ³ RIIA and the C5a-C5aR Pathway Mediate Platelet Hyperactivation in COVID-19. Frontiers in Immunology, 2022, 13, 834988.	4.8	26
11	Reply to: Physiology is Vital to Precision Medicine in ARDS and Sepsis. American Journal of Respiratory and Critical Care Medicine, 2022, , .	5.6	0
12	New Insights into Clinical and Mechanistic Heterogeneity of the Acute Respiratory Distress Syndrome: Summary of the Aspen Lung Conference 2021. American Journal of Respiratory Cell and Molecular Biology, 2022, 67, 284-308.	2.9	9
13	Redefining critical illness. Nature Medicine, 2022, 28, 1141-1148.	30.7	136
14	I-SPY COVID adaptive platform trial for COVID-19 acute respiratory failure: rationale, design and operations. BMJ Open, 2022, 12, e060664.	1.9	15
15	Association of vancomycin plus piperacillin–tazobactam with early changes in creatinine versus cystatin C in critically ill adults: a prospective cohort study. Intensive Care Medicine, 2022, 48, 1144-1155.	8.2	43
16	Preparedness Tested: Severe Cerebral Malaria Presenting as a High-Risk Person Under Investigation for Ebola Virus Disease at a US Hospital. Disaster Medicine and Public Health Preparedness, 2021, 15, 528-533.	1.3	0
17	Severe Impairment of Microcirculatory Perfused Vessel Density Is Associated With Postoperative Lactate and Acute Organ Injury After Cardiac Surgery. Journal of Cardiothoracic and Vascular Anesthesia, 2021, 35, 106-115.	1.3	21
18	Plasma Insulin-like Growth Factor Binding Protein 7 Contributes Causally to ARDS 28-Day Mortality. Chest, 2021, 159, 1007-1018.	0.8	9

#	Article	IF	CITATIONS
19	Immune Stimulation With Recombinant Human Granulocyte Colony–Stimulating Factor for Coronavirus Disease 2019 (COVID-19)—Beware of Blind Spots. JAMA Internal Medicine, 2021, 181, 78.	5.1	4
20	The ABO histo-blood group, endothelial activation, and acute respiratory distress syndrome risk in critical illness. Journal of Clinical Investigation, 2021, 131, .	8.2	26
21	Covid-19 controversies: the tocilizumab chapter. BMJ, The, 2021, 372, n244.	6.0	17
22	Precision medicine in acute respiratory distress syndrome: workshop report and recommendations for future research. European Respiratory Review, 2021, 30, 200317.	7.1	34
23	Deep immune profiling of MIS-C demonstrates marked but transient immune activation compared with adult and pediatric COVID-19. Science Immunology, 2021, 6, .	11.9	152
24	Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection. Cell, 2021, 184, 1858-1864.e10.	28.9	332
25	CD8+ T cells contribute to survival in patients with COVID-19 and hematologic cancer. Nature Medicine, 2021, 27, 1280-1289.	30.7	365
26	Integrative omics provide biological and clinical insights into acute respiratory distress syndrome. Intensive Care Medicine, 2021, 47, 761-771.	8.2	19
27	Deep learning to detect acute respiratory distress syndrome on chest radiographs: a retrospective study with external validation. The Lancet Digital Health, 2021, 3, e340-e348.	12.3	39
28	The relationship between vitamin C or thiamine levels and outcomes for severe sepsis patients admitted to the ICU. Scientific Reports, 2021, 11, 15114.	3.3	4
29	Erythrocytes identify complement activation in patients with COVID-19. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L485-L489.	2.9	39
30	Signatures of COVID-19 Severity and Immune Response in the Respiratory Tract Microbiome. MBio, 2021, 12, e0177721.	4.1	74
31	Acute respiratory distress syndrome. Lancet, The, 2021, 398, 622-637.	13.7	426
32	New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nature Communications, 2021, 12, 5417.	12.8	286
33	Genetics of Acute Respiratory Distress Syndrome. Critical Care Clinics, 2021, 37, 817-834.	2.6	3
34	DNA binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia. Science Translational Medicine, 2021, 13, eabj1008.	12.4	90
35	APOL1 risk variants in individuals of African genetic ancestry drive endothelial cell defects that exacerbate sepsis. Immunity, 2021, 54, 2632-2649.e6.	14.3	48
36	A Research Agenda for Precision Medicine in Sepsis and Acute Respiratory Distress Syndrome: An Official American Thoracic Society Research Statement. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 891-901.	5.6	38

#	Article	IF	Citations
37	Multisystem Inflammation and Organ Dysfunction After BNT162b2 Messenger RNA Coronavirus Disease 2019 Vaccination., 2021, 3, e0578.		11
38	A randomized controlled study of convalescent plasma for individuals hospitalized with COVID-19 pneumonia. Journal of Clinical Investigation, 2021, 131, .	8.2	51
39	Identification of novel neutrophil very long chain plasmalogen molecular species and their myeloperoxidase mediated oxidation products in human sepsis. Redox Biology, 2021, 48, 102208.	9.0	12
40	Plasma Mitochondrial DNA Levels Are Associated With ARDS in Trauma and Sepsis Patients. Chest, 2020, 157, 67-76.	0.8	64
41	Plasma sRAGE Acts as a Genetically Regulated Causal Intermediate in Sepsis-associated Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 47-56.	5.6	49
42	Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science, 2020, 369, .	12.6	1,280
43	Comprehensive mapping of immune perturbations associated with severe COVID-19. Science Immunology, 2020, 5, .	11.9	677
44	Diagnostic biomarkers to differentiate sepsis from cytokine release syndrome in critically ill children. Blood Advances, 2020, 4, 5174-5183.	5.2	30
45	E-Cigarette or Vaping Product Use–associated Lung Injury: Developing a Research Agenda. An NIH Workshop Report. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 795-802.	5.6	42
46	COVID-19–associated Acute Respiratory Distress Syndrome Clarified: A Vascular Endotype?. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 750-753.	5.6	36
47	Sepsis-associated acute respiratory distress syndrome in individuals of European ancestry: a genome-wide association study. Lancet Respiratory Medicine, the, 2020, 8, 258-266.	10.7	38
48	Precision Medicine in Critical Illness: Sepsis and Acute Respiratory Distress Syndrome. Respiratory Medicine, 2020, , 267-288.	0.1	2
49	Plasma receptor interacting protein kinase-3 levels are associated with acute respiratory distress syndrome in sepsis and trauma: a cohort study. Critical Care, 2019, 23, 235.	5.8	26
50	Reply: Against Another Nonspecific Marker of Perfusion. Annals of the American Thoracic Society, 2019, 16, 1337-1338.	3.2	0
51	Circulating heparan sulfate fragments mediate septic cognitive dysfunction. Journal of Clinical Investigation, 2019, 129, 1779-1784.	8.2	79
52	Troponin I: A New Marker of Sepsis-induced Hypoperfusion?. Annals of the American Thoracic Society, 2019, 16, 552-553.	3.2	7
53	1779. Critical Care Medicine, 2019, 47, 863.	0.9	0
54	Plasma sTNFR1 and IL8 for prognostic enrichment in sepsis trials: a prospective cohort study. Critical Care, 2019, 23, 400.	5.8	22

#	Article	IF	CITATIONS
55	HDL Cholesterol: A "Pathogen Lipid Sink―for Sepsis?. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 812-814.	5.6	7
56	Genome-Wide Association Study in African Americans with Acute Respiratory Distress Syndrome Identifies the Selectin P Ligand Gene as a Risk Factor. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1421-1432.	5.6	50
57	Mortality Benefit of Recombinant Human Interleukin-1 Receptor Antagonist for Sepsis Varies by Initial Interleukin-1 Receptor Antagonist Plasma Concentration*. Critical Care Medicine, 2018, 46, 21-28.	0.9	72
58	Plasma angiopoietin-2 as a potential causal marker in sepsis-associated ARDS development: evidence from Mendelian randomization and mediation analysis. Intensive Care Medicine, 2018, 44, 1849-1858.	8.2	89
59	Quantitative peripheral muscle ultrasound in sepsis: Muscle area superior to thickness. Journal of Critical Care, 2018, 47, 324-330.	2.2	53
60	<i>MUC5B</i> Promoter Polymorphism and Development of Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 1342-1345.	5.6	9
61	What's in a Number? Platelet Count Dynamics as a Novel Mediator of Acute Respiratory Distress Syndrome Survival. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1285-1287.	5.6	1
62	F <scp>ifty</scp> Y <scp>ears of</scp> R <scp>esearch in</scp> ARDS.Genomic Contributions and Opportunities. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1113-1121.	5.6	52
63	Novel translational approaches to the search for precision therapies for acute respiratory distress syndrome. Lancet Respiratory Medicine, the, 2017, 5, 512-523.	10.7	62
64	SNPing Away at the Genetic Risk for Acute Kidney Injury. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 416-418.	5.6	1
65	Genetics in the Prevention and Treatment of Sepsis. Respiratory Medicine, 2017, , 237-264.	0.1	1
66	Myeloperoxidase-derived 2-chlorofatty acids contribute to human sepsis mortality via acute respiratory distress syndrome. JCl Insight, 2017, 2, .	5.0	38
67	Admission plasma levels of the neuronal injury marker neuron-specific enolase are associated with mortality and delirium in sepsis. Journal of Critical Care, 2016, 36, 18-23.	2.2	53
68	Circulating markers of endothelial and alveolar epithelial dysfunction are associated with mortality in pediatric acute respiratory distress syndrome. Intensive Care Medicine, 2016, 42, 1137-1145.	8.2	56
69	Causal Genetic Inference Using Haplotypes as Instrumental Variables. Genetic Epidemiology, 2016, 40, 35-44.	1.3	11
70	Factors affecting biomarkers of endothelial and alveolar epithelial dysfunction: response to comments by Kyo et al Intensive Care Medicine, 2016, 42, 2113-2114.	8.2	0
71	Neutropenic sepsis is associated with distinct clinical and biological characteristics: a cohort study of severe sepsis. Critical Care, 2016, 20, 222.	5.8	46
72	Acute kidney injury subphenotypes based on creatinine trajectory identifies patients at increased risk of death. Critical Care, 2016, 20, 372.	5.8	58

#	Article	IF	Citations
73	1344: PLASMA RIP3, A REGULATOR OF NECROPTOSIS, IS ASSOCIATED WITH MORTALITY & DYSFUNCTION IN SEPSIS. Critical Care Medicine, 2016, 44, 411-411.	0.9	1
74	Low Plasma Levels of Adiponectin Do Not Explain Acute Respiratory Distress Syndrome Risk: a Prospective Cohort Study of Patients with Severe Sepsis. Critical Care, 2016, 20, 71.	5.8	15
75	Diagnostic workup for ARDS patients. Intensive Care Medicine, 2016, 42, 674-685.	8.2	89
76	Which Patients With ARDS Benefit From Lung Biopsy?. Chest, 2015, 148, 1073-1082.	0.8	32
77	Comparing the prognostic performance of ASSIST to interleukin-6 and procalcitonin in patients with severe sepsis or septic shock. Biomarkers, 2015, 20, 132-135.	1.9	9
78	Oxidant stress regulatory genetic variation in recipients and donors contributes to risk of primary graft dysfunction after lung transplantation. Journal of Thoracic and Cardiovascular Surgery, 2015, 149, 596-602.e3.	0.8	35
79	Finding a Needle in the Haystack. Critical Care Medicine, 2015, 43, 242-243.	0.9	2
80	The ABO Histo-Blood Group and AKI in Critically III Patients with Trauma or Sepsis. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 1911-1920.	4.5	41
81	Integrative genomics identifies $7p11.2$ as a novel locus for fever and clinical stress response in humans. Human Molecular Genetics, 2015 , 24 , $1801-1812$.	2.9	18
82	The long noncoding RNA landscape in hypoxic and inflammatory renal epithelial injury. American Journal of Physiology - Renal Physiology, 2015, 309, F901-F913.	2.7	70
83	Epidemiology and outcomes in patients with severe sepsis admitted to the hospital wards. Journal of Critical Care, 2015, 30, 78-84.	2.2	36
84	A Functional Synonymous Coding Variant in the <i>IL1RN </i> Sene Is Associated with Survival in Septic Shock. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 656-664.	5.6	42
85	Heterogeneous Phenotypes of Acute Respiratory Distress Syndrome after Major Trauma. Annals of the American Thoracic Society, 2014, 11, 728-736.	3.2	77
86	A Multibiomarker-Based Outcome Risk Stratification Model for Adult Septic Shock*. Critical Care Medicine, 2014, 42, 781-789.	0.9	107
87	PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Science Translational Medicine, 2014, 6, 258ra143.	12.4	287
88	Beyond Single-Nucleotide Polymorphisms. Clinics in Chest Medicine, 2014, 35, 673-684.	2.1	17
89	Red Blood Cells Induce Necroptosis of Lung Endothelial Cells and Increase Susceptibility to Lung Inflammation. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 1243-1254.	5.6	89
90	Genetic Variation in the Prostaglandin E ₂ Pathway Is Associated with Primary Graft Dysfunction. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 567-575.	5.6	32

#	Article	IF	Citations
91	Pattern recognition in ARDS: a crucial first step toward personalised treatment. Lancet Respiratory Medicine, the, 2014, 2, 594-595.	10.7	5
92	ABO Blood Type A Is Associated With Increased Risk of ARDS in Whites Following Both Major Trauma and Severe Sepsis. Chest, 2014, 145, 753-761.	0.8	61
93	<i>IL1RN</i> Coding Variant Is Associated with Lower Risk of Acute Respiratory Distress Syndrome and Increased Plasma IL-1 Receptor Antagonist. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 950-959.	5.6	7 5
94	Future clinical applications of genomics for acute respiratory distress syndrome. Lancet Respiratory Medicine, the, 2013, 1, 793-803.	10.7	9
95	Genetic Heterogeneity and Risk of Acute Respiratory Distress Syndrome. Seminars in Respiratory and Critical Care Medicine, 2013, 34, 459-474.	2.1	52
96	Circulating Mitochondrial DNA in Patients in the ICU as a Marker of Mortality: Derivation and Validation. PLoS Medicine, 2013, 10, e1001577.	8.4	354
97	Distinct and replicable genetic risk factors for acute respiratory distress syndrome of pulmonary or extrapulmonary origin. Journal of Medical Genetics, 2012, 49, 671-680.	3.2	53
98	von Willebrand factor and angiopoietin-2. Critical Care Medicine, 2012, 40, 1966-1967.	0.9	4
99	The association of early transfusion with acute lung injury in patients with severe injury. Journal of Trauma and Acute Care Surgery, 2012, 73, 825-831.	2.1	15
100	Inflammasome-regulated Cytokines Are Critical Mediators of Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 1225-1234.	5.6	469
101	SNP-set analysis replicates acute lung injury genetic risk factors. BMC Medical Genetics, 2012, 13, 52.	2.1	15
102	African American race, obesity, and blood product transfusion are risk factors for acute kidney injury in critically ill trauma patients. Journal of Critical Care, 2012, 27, 496-504.	2.2	88
103	Variation in <i>PTX3</i> Is Associated with Primary Graft Dysfunction after Lung Transplantation. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 546-552.	5.6	68
104	Elevated Plasma Angiopoietin-2 Levels and Primary Graft Dysfunction after Lung Transplantation. PLoS ONE, 2012, 7, e51932.	2.5	28
105	Genome Wide Association Identifies PPFIA1 as a Candidate Gene for Acute Lung Injury Risk Following Major Trauma. PLoS ONE, 2012, 7, e28268.	2.5	73
106	Meta-analysis of Dense Genecentric Association Studies Reveals Common and Uncommon Variants Associated with Height. American Journal of Human Genetics, 2011, 88, 6-18.	6.2	122
107	Novel variants in the PRDX6 Gene and the risk of Acute Lung Injury following major trauma. BMC Medical Genetics, 2011, 12, 77.	2.1	11
108	Role of Growth Arrest and DNA Damage–inducible α in Akt Phosphorylation and Ubiquitination after Mechanical Stress-induced Vascular Injury. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 1030-1040.	5.6	33

#	Article	IF	CITATIONS
109	<i>ANGPT2</i> Genetic Variant Is Associated with Trauma-associated Acute Lung Injury and Altered Plasma Angiopoietin-2 Isoform Ratio. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1344-1353.	5.6	107
110	Genome Wide Association (GWA) Identifies Functional Susceptibility Loci For Trauma-Associated Acute Lung Injury. , 2010, , .		1
111	Extracellular Superoxide Dismutase Haplotypes and Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 89-91.	5.6	3
112	GADD45a is a novel candidate gene in inflammatory lung injury via influences on Akt signaling. FASEB Journal, 2009, 23, 1325-1337.	0.5	60
113	Sizing up (or down) extravascular lung water as a predictor of outcome in acute lung injury/acute respiratory distress syndrome*. Critical Care Medicine, 2008, 36, 337-338.	0.9	3
114	Wading into the Genomic Pool to Unravel Acute Lung Injury Genetics. Proceedings of the American Thoracic Society, 2007, 4, 69-76.	3.5	41
115	Brain dysfunction in critically ill patientsthe intensive care unit and beyond. Critical Care, 2006, 10, 223.	5.8	26
116	Acute Tachypnea During Mechanical Ventilation in a 62-Year-Old Man With Multiple Myeloma Involving the Spinal Cord. Chest, 2006, 130, 616-619.	0.8	2
117	Relative Adrenal Insufficiency in the ICU: Can We at Least Make the Diagnosis?. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 1282-1284.	5.6	17
118	Evolving Immunosuppressive Regimens for Lung Transplant Recipients. Seminars in Respiratory and Critical Care Medicine, 2006, 27, 470-479.	2.1	5
119	Plasmalogen Loss in Sepsis and SARS-CoV-2 Infection. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	7