
Mads S Thomsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9382394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Climate-driven regime shift of a temperate marine ecosystem. Science, 2016, 353, 169-172.	12.6	951
2	An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nature Climate Change, 2013, 3, 78-82.	18.8	925
3	Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate Change, 2019, 9, 306-312.	18.8	883
4	Categorizing and Naming Marine Heatwaves. Oceanography, 2018, 31, .	1.0	368
5	A decade of climate change experiments on marine organisms: procedures, patterns and problems. Global Change Biology, 2012, 18, 1491-1498.	9.5	355
6	Projected Marine Heatwaves in the 21st Century and the Potential for Ecological Impact. Frontiers in Marine Science, 2019, 6, .	2.5	300
7	Seaweed Communities in Retreat from Ocean Warming. Current Biology, 2011, 21, 1828-1832.	3.9	297
8	Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. Ecology Letters, 2010, 13, 685-694.	6.4	282
9	Habitat Cascades: The Conceptual Context and Global Relevance of Facilitation Cascades via Habitat Formation and Modification. Integrative and Comparative Biology, 2010, 50, 158-175.	2.0	216
10	Local Extinction of Bull Kelp (Durvillaea spp.) Due to a Marine Heatwave. Frontiers in Marine Science, 2019, 6, .	2.5	177
11	Drivers and impacts of the most extreme marine heatwave events. Scientific Reports, 2020, 10, 19359.	3.3	155
12	Genetic diversity and kelp forest vulnerability to climatic stress. Scientific Reports, 2018, 8, 1851.	3.3	138
13	Distribution models predict large contractions of habitatâ€forming seaweeds in response to ocean warming. Diversity and Distributions, 2018, 24, 1350-1366.	4.1	129
14	Socioeconomic impacts of marine heatwaves: Global issues and opportunities. Science, 2021, 374, eabj3593.	12.6	115
15	EVIDENCE FOR IMPACTS OF NONINDIGENOUS MACROALGAE: A METAâ€ANALYSIS OF EXPERIMENTAL FIELD STUDIES ¹ . Journal of Phycology, 2009, 45, 812-819.	2.3	100
16	An invasive foundation species enhances multifunctionality in a coastal ecosystem. Proceedings of the United States of America, 2017, 114, 8580-8585.	7.1	99
17	Resistance, Extinction, and Everything in Between – The Diverse Responses of Seaweeds to Marine Heatwaves. Frontiers in Marine Science, 2019, 6, .	2.5	98
18	A Meta-Analysis of Seaweed Impacts on Seagrasses: Generalities and Knowledge Gaps. PLoS ONE, 2012, 7, e28595.	2.5	93

Mads S Thomsen

#	Article	IF	CITATIONS
19	Biogenic habitat structure of seaweeds change along a latitudinal gradient in ocean temperature. Journal of Experimental Marine Biology and Ecology, 2011, 400, 264-271.	1.5	87
20	Secondary foundation species enhance biodiversity. Nature Ecology and Evolution, 2018, 2, 634-639.	7.8	85
21	Experimental evidence for positive effects of invasive seaweed on native invertebrates via habitat-formation in a seagrass bed. Aquatic Invasions, 2010, 5, 341-346.	1.6	85
22	A framework to study the context-dependent impacts of marine invasions. Journal of Experimental Marine Biology and Ecology, 2011, 400, 322-327.	1.5	79
23	Macroalgal distribution patterns in a shallow, soft-bottom lagoon, with emphasis on the nonnativeGracilaria vermiculophylla andCodium fragile. Estuaries and Coasts, 2006, 29, 465-473.	2.2	77
24	GRACILARIA VERMICULOPHYLLA (RHODOPHYTA, GRACILARIALES) IN HOG ISLAND BAY, VIRGINIA: A CRYPTIC ALIEN AND INVASIVE MACROALGA AND TAXONOMIC CORRECTION1. Journal of Phycology, 2006, 42, 139-141.	2.3	76
25	A broad framework to organize and compare ecological invasion impacts. Environmental Research, 2011, 111, 899-908.	7.5	74
26	Epibiota communities of the introduced and indigenous macroalgal relatives Sargassum muticum and Halidrys siliquosa in Limfjorden (Denmark). Helgoland Marine Research, 2004, 58, 154-161.	1.3	70
27	A review of three decades of research on the invasive kelp Undaria pinnatifida in Australasia: An assessment of its success, impacts and status as one of the world's worst invaders. Marine Environmental Research, 2017, 131, 243-257.	2.5	67
28	Flora and fauna associated with the introduced red alga <i>Gracilaria vermiculophylla</i> . European Journal of Phycology, 2009, 44, 395-403.	2.0	64
29	Effects of the invasive macroalgae Gracilaria vermiculophylla on two co-occurring foundation species and associated invertebrates. Aquatic Invasions, 2013, 8, 133-145.	1.6	61
30	Australia's marine biogeography revisited: Back to the future?. Austral Ecology, 2010, 35, 988-992.	1.5	60
31	Gracilaria vermiculophylla (Ohmi) Papenfuss, 1967 (Rhodophyta, Gracilariaceae) in northern Europe, with emphasis on Danish conditions, and what to expect in the future. Aquatic Invasions, 2007, 2, 83-94.	1.6	57
32	An invasive species erodes the performance of coastal wetland protected areas. Science Advances, 2021, 7, eabi8943.	10.3	45
33	Habitat structure affect abundances of labrid fishes across temperate reefs in south-western Australia. Environmental Biology of Fishes, 2009, 86, 311-319.	1.0	44
34	Miniview: What affects the forces required to break or dislodge macroalgae?. European Journal of Phycology, 2005, 40, 139-148.	2.0	41
35	The Footprint of Continental-Scale Ocean Currents on the Biogeography of Seaweeds. PLoS ONE, 2013, 8, e80168.	2.5	39
36	Transient effects of an invasive kelp on the community structure and primary productivity of an intertidal assemblage. Marine and Freshwater Research, 2016, 67, 103.	1.3	38

MADS S THOMSEN

#	Article	IF	CITATIONS
37	Negative effects of stress-resistant drift algae and high temperature on a small ephemeral seagrass species. Marine Biology, 2011, 158, 297-309.	1.5	37
38	Forty years of experiments on aquatic invasive species: are study biases limiting our understanding of impacts?. NeoBiota, 0, 22, 1-22.	1.0	37
39	The KaikÅura earthquake in southern New Zealand: Loss of connectivity of marine communities and the necessity of a crossâ€ecosystem perspective. Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 1520-1534.	2.0	36
40	Temperature- and light-dependent growth and metabolism of the invasive red algae <i>Gracilaria vermiculophylla</i> – a comparison with two native macroalgae. European Journal of Phycology, 2013, 48, 295-308.	2.0	35
41	Species, thallus size and substrate determine macroalgal break force and break location in a low-energy soft-bottom lagoon. Aquatic Botany, 2004, 80, 153-161.	1.6	34
42	Unparalleled coupled ocean-atmosphere summer heatwaves in the New Zealand region: drivers, mechanisms and impacts. Climatic Change, 2020, 162, 485-506.	3.6	34
43	To include or not to include (the invader in community analyses)? That is the question. Biological Invasions, 2016, 18, 1515-1521.	2.4	33
44	Non-native Seaweeds Drive Changes in Marine Coastal Communities Around the World. , 2016, , 147-185.		32
45	The ecological role of invading Undaria pinnatifida: an experimental test of the driver–passenger models. Marine Biology, 2016, 163, 1.	1.5	31
46	Facilitation Cascades in Marine Ecosystems: A Synthesis and Future Directions. , 2019, , 127-168.		29
47	Communities and Attachment Networks Associated with Primary, Secondary and Alternative Foundation Species; A Case Study of Stressed and Disturbed Stands of Southern Bull Kelp. Diversity, 2019, 11, 56.	1.7	28
48	Harmful algae are not harmful to everyone. Harmful Algae, 2012, 16, 74-80.	4.8	26
49	Extreme summer marine heatwaves increase chlorophyll <i>a</i> in the Southern Ocean. Antarctic Science, 2020, 32, 508-509.	0.9	25
50	Loss of Giant Kelp, Macrocystis pyrifera, Driven by Marine Heatwaves and Exacerbated by Poor Water Clarity in New Zealand. Frontiers in Marine Science, 2021, 8, .	2.5	25
51	Assemblage and understory carbon production of native and invasive canopy-forming macroalgae. Journal of Experimental Marine Biology and Ecology, 2015, 469, 10-17.	1.5	24
52	A sixthâ€level habitat cascade increases biodiversity in an intertidal estuary. Ecology and Evolution, 2016, 6, 8291-8303.	1.9	23
53	A host-specific habitat former controls biodiversity across ecological transitions in a rocky intertidal facilitation cascade. Marine and Freshwater Research, 2016, 67, 144.	1.3	21
54	Heterogeneity within and among co-occurring foundation species increases biodiversity. Nature Communications, 2022, 13, 581.	12.8	21

MADS S THOMSEN

#	Article	IF	CITATIONS
55	The Dynamic Biogeography of the Anthropocene: The Speed of Recent Range Shifts in Seaweeds. , 2016, , 63-93.		20
56	Cascading impacts of earthquakes and extreme heatwaves have destroyed populations of an iconic marine foundation species. Diversity and Distributions, 2021, 27, 2369-2383.	4.1	19
57	Complex plant–herbivore–predator interactions in a brackish water seaweed habitat. Journal of Experimental Marine Biology and Ecology, 2013, 449, 51-56.	1.5	16
58	Indiscriminate data aggregation in ecological meta-analysis underestimates impacts of invasive species. Nature Ecology and Evolution, 2020, 4, 312-314.	7.8	15
59	Turban snails as habitat for foliose algae: contrasting geographical patterns in species richness. Marine and Freshwater Research, 2010, 61, 1237.	1.3	15
60	Unravelling seasonal trends in coastal marine heatwave metrics across global biogeographical realms. Scientific Reports, 2022, 12, 7740.	3.3	15
61	Another Decade of Marine Climate Change Experiments: Trends, Progress and Knowledge Gaps. Frontiers in Marine Science, 2021, 8, .	2.5	14
62	Large-scale facilitation of a sessile community by an invasive habitat-forming snail. Helgoland Marine Research, 2013, 67, 789-794.	1.3	13
63	Modified kelp seasonality and invertebrate diversity where an invasive kelp co-occurs with native mussels. Marine Biology, 2018, 165, 1.	1.5	12
64	On the generality of cascading habitat-formation. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20131994.	2.6	11
65	Effects of local anthropogenic stressors on a habitat cascade in an estuarine seagrass system. Marine and Freshwater Research, 2019, 70, 1129.	1.3	11
66	Interactive effects of co-occurring anthropogenic stressors on the seagrass, Zostera noltei. Ecological Indicators, 2020, 109, 105780.	6.3	11
67	Earthquake-driven destruction of an intertidal habitat cascade. Aquatic Botany, 2020, 164, 103217.	1.6	11
68	Cataclysmic Disturbances to an Intertidal Ecosystem: Loss of Ecological Infrastructure Slows Recovery of Biogenic Habitats and Diversity. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	10
69	Invasions by non-indigenous species. , 0, , 274-332.		8
70	The devil in the detail: harmful seaweeds are not harmful to everyone. Global Change Biology, 2015, 21, 1381-1382.	9.5	8
71	A seaweed increases ecosystem multifunctionality when invading bare mudflats. Biological Invasions, 2019, 21, 27-36.	2.4	8

72 Epibiont-Marine Macrophyte Assemblages. , 2016, , 43-65.

MADS S THOMSEN

#	Article	IF	CITATIONS
73	Diversity and abundance of epibiota on invasive and native estuarine gastropods depend on substratum and salinity. Marine and Freshwater Research, 2015, 66, 1191.	1.3	7
74	Habitat provided by native species facilitates higher abundances of an invader in its introduced compared to native range. Scientific Reports, 2020, 10, 6385.	3.3	7
75	Misconceptions about analyses of Australian seaweed collections. Phycologia, 2014, 53, 215-220.	1.4	6
76	Marine Biodiversity and Climate Change. , 2014, , 181-187.		6
77	Shared patterns of species turnover between seaweeds and seed plants break down at increasing distances from the sea. Ecology and Evolution, 2014, 4, 27-34.	1.9	4
78	Threats to Ecosystem Engineering Macrophytes: Climate Change. , 2016, , 201-218.		3
79	Ecological Interactions between Marine Plants and Alien Species. , 2016, , 226-249.		3