
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9382332/publications.pdf Version: 2024-02-01

SASCHA KUDZ

#	Article	IF	CITATIONS
1	Combining subspace codes. Advances in Mathematics of Communications, 2023, 17, 536-550.	0.4	10
2	Classification of \$ mathbf{(3 !mod 5)} \$ arcs in \$ mathbf{ operatorname{PG}(3,5)} \$. Advances in Mathematics of Communications, 2023, 17, 172-206.	0.4	1
3	A Generalization of the Cylinder Conjecture for Divisible Codes. IEEE Transactions on Information Theory, 2022, 68, 2281-2289.	1.5	2
4	The interplay of different metrics for the construction of constant dimension codes. Advances in Mathematics of Communications, 2022, .	0.4	3
5	On the number of minimal codewords in codes generated by the adjacency matrix of a graph. Discrete Applied Mathematics, 2022, 309, 221-228.	0.5	Ο
6	Three-Weight Codes over Rings and Strongly Walk Regular Graphs. Graphs and Combinatorics, 2022, 38, 1.	0.2	3
7	No Projective 16-Divisible Binary Linear Code of Length 131 Exists. IEEE Communications Letters, 2021, 25, 38-40.	2.5	0
8	Axiomatizations for the Shapley–Shubik power index for games with several levels of approval in the input and output. Social Choice and Welfare, 2021, 56, 569-594.	0.4	2
9	Influence in weighted committees. European Economic Review, 2021, 132, 103634.	1.2	8
10	Computer Classification of Linear Codes. IEEE Transactions on Information Theory, 2021, 67, 7807-7814.	1.5	10
11	PIR Codes with Short Block Length. Designs, Codes, and Cryptography, 2021, 89, 559-587.	1.0	2
12	A note on the growth of the dimension in complete simple games. Mathematical Social Sciences, 2021, 110, 14-18.	0.3	2
13	On the maximum number of minimal codewords. Discrete Mathematics, 2021, 344, 112510.	0.4	Ο
14	An exact column-generation approach for the lot-type design problem. Top, 2021, 29, 741-780.	1.1	0
15	Bounds for flag codes. Designs, Codes, and Cryptography, 2021, 89, 2759-2785.	1.0	7
16	Simple games versus weighted voting games: bounding the critical threshold value. Social Choice and Welfare, 2020, 54, 609-621.	0.4	0
17	A note on limit results for the Penrose–Banzhaf index. Theory and Decision, 2020, 88, 191-203.	0.5	2
18	Weighted committee games. European Journal of Operational Research, 2020, 282, 972-979.	3.5	12

#	Article	IF	CITATIONS
19	The Lengths of Projective Triply-Even Binary Codes. IEEE Transactions on Information Theory, 2020, 66, 2713-2716.	1.5	4
20	Subspaces intersecting in at most a point. Designs, Codes, and Cryptography, 2020, 88, 595-599.	1.0	4
21	A Geometric View of the Service Rates of Codes Problem and its Application to the Service Rate of the First Order Reed-Muller Codes. , 2020, , .		6
22	Generalized LMRD Code Bounds for Constant Dimension Codes. IEEE Communications Letters, 2020, 24, 2100-2103.	2.5	2
23	On the Lengths of Divisible Codes. IEEE Transactions on Information Theory, 2020, 66, 4051-4060.	1.5	11
24	Subspace packings: constructions and bounds. Designs, Codes, and Cryptography, 2020, 88, 1781-1810.	1.0	6
25	Classification of large partial plane spreads in \$\${{,mathrm{PG},}}(6,2)\$\$ PG (6 , 2) and related combinatorial objects. Journal of Geometry, 2019, 110, 1.	0.1	4
26	2. q-analogs of group divisible designs. , 2019, , 21-38.		1
27	Classifying optimal binary subspace codes of length 8, constant dimension 4 and minimum distance 6. Designs, Codes, and Cryptography, 2019, 87, 375-391.	1.0	12
28	Bounds for the Nakamura number. Social Choice and Welfare, 2019, 52, 607-634.	0.4	4
29	Johnson Type Bounds for Mixed Dimension Subspace Codes. Electronic Journal of Combinatorics, 2019, 26, .	0.2	3
30	Representation-compatible power indices. Annals of Operations Research, 2018, 264, 235-265.	2.6	3
31	Fair representation and a linear Shapley rule. Games and Economic Behavior, 2018, 108, 152-161.	0.4	2
32	The order of the automorphism group of a binary \$\${varvec{q}}\$\$ q -analog of the Fano plane is at most two. Designs, Codes, and Cryptography, 2018, 86, 239-250.	1.0	10
33	IMPORTANCE IN SYSTEMS WITH INTERVAL DECISIONS. International Journal of Modeling, Simulation, and Scientific Computing, 2018, 21, 1850024.	0.9	5
34	Heden's bound on the tail of a vector space partition. Discrete Mathematics, 2018, 341, 3447-3452.	0.4	1
35	The roll call interpretation of the Shapley value. Economics Letters, 2018, 173, 108-112.	0.9	5
36	The power of the largest player. Economics Letters, 2018, 168, 123-126.	0.9	1

#	Article	IF	CITATIONS
37	Partial Spreads and Vector Space Partitions. Signals and Communication Technology, 2018, , 131-170.	0.4	17
38	Simple Games Versus Weighted Voting Games. Lecture Notes in Computer Science, 2018, , 69-81.	1.0	1
39	Binary subspace codes in small ambient spaces. Advances in Mathematics of Communications, 2018, 12, 817-839.	0.4	1
40	On the Democratic Weights of Nations. Journal of Political Economy, 2017, 125, 1599-1634.	3.3	26
41	Improved upper bounds for partial spreads. Designs, Codes, and Cryptography, 2017, 85, 97-106.	1.0	18
42	On the characterization of weighted simple games. Theory and Decision, 2017, 83, 469-498.	0.5	14
43	The prediction value. Social Choice and Welfare, 2017, 48, 433-460.	0.4	3
44	Coset Construction for Subspace Codes. IEEE Transactions on Information Theory, 2017, 63, 7651-7660.	1.5	22
45	Asymptotic Bounds for the Sizes of Constant Dimension Codes and an Improved Lower Bound. Lecture Notes in Computer Science, 2017, , 163-191.	1.0	18
46	Computing the Power Distribution in the IMF. SSRN Electronic Journal, 2016, , .	0.4	7
47	Dimension and codimension of simple games. Electronic Notes in Discrete Mathematics, 2016, 55, 147-150.	0.4	2
48	The cost of getting local monotonicity. European Journal of Operational Research, 2016, 251, 600-612.	3.5	12
49	The inverse problem for power distributions in committees. Social Choice and Welfare, 2016, 47, 65-88.	0.4	9
50	Dimension of the Lisbon voting rules in the EU Council: a challenge and new world record. Optimization Letters, 2016, 10, 1245-1256.	0.9	18
51	Constructions and bounds for mixed-dimension subspace codes. Advances in Mathematics of Communications, 2016, 10, 649-682.	0.4	7
52	Optimal control of the freezing time in the Hegselmann–Krause dynamics. Journal of Difference Equations and Applications, 2015, 21, 633-648.	0.7	13
53	Minimal proper non-IRUP instances of the one-dimensional cutting stock problem. Discrete Applied Mathematics, 2015, 187, 120-129.	0.5	42
54	The Top-Dog Index: a new measurement for the demand consistency of the size distribution in pre-pack orders for a fashion discounter with many small branches. Annals of Operations Research, 2015, 229, 541-563.	2.6	3

#	Article	IF	CITATIONS
55	Measuring Voting Power in Convex Policy Spaces. Economies, 2014, 2, 45-77.	1.2	11
56	Ready for the Design of Voting Rules?. SSRN Electronic Journal, 2014, , .	0.4	0
57	Minimal Proper Non-IRUP Instances of the One-Dimensional Cutting Stock Problem. SSRN Electronic Journal, 2014, , .	0.4	2
58	The nucleolus of large majority games. Economics Letters, 2014, 123, 139-143.	0.9	20
59	Enumeration of weighted games with minimum and an analysis of voting power for bipartite complete games with minimum. Annals of Operations Research, 2014, 222, 317-339.	2.6	9
60	On \$\${alpha }\$\$ α -roughly weighted games. International Journal of Game Theory, 2014, 43, 659-692.	0.5	14
61	Heuristic and exact solutions to the inverse power index problem for small voting bodies. Annals of Operations Research, 2014, 215, 137-163.	2.6	24
62	On minimum integer representations of weighted games. Mathematical Social Sciences, 2014, 67, 9-22.	0.3	18
63	How long does it take to consensus in the Hegselmann-Krause model?. Proceedings in Applied Mathematics and Mechanics, 2014, 14, 803-804.	0.2	2
64	On Dedekind's problem for complete simple games. International Journal of Game Theory, 2013, 42, 411-437.	0.5	27
65	Open Sets Avoiding Integral Distances. Discrete and Computational Geometry, 2013, 50, 99-123.	0.4	0
66	The golden number and Fibonacci sequences in the design of voting structures. European Journal of Operational Research, 2013, 226, 246-257.	3.5	12
67	On the inverse power index problem. Optimization, 2012, 61, 989-1011.	1.0	45
68	On minimum sum representations for weighted voting games. Annals of Operations Research, 2012, 196, 361-369.	2.6	47
69	The integrated size and price optimization problem. Numerical Algebra, Control and Optimization, 2012, 2, 669-693.	1.0	3
70	On the Hegselmann–Krause conjecture in opinion dynamics. Journal of Difference Equations and Applications, 2011, 17, 859-876.	0.7	36
71	Regular Matchstick Graphs. American Mathematical Monthly, 2011, 118, 264.	0.2	4
72	Maximal integral point sets over â"2. International Journal of Computer Mathematics, 2010, 87, 2653-2676.	1.0	2

SASCHA KURZ

#	Article	IF	CITATIONS
73	On the lot-type design problem. Optimization Methods and Software, 2010, 25, 217-227.	1.6	3
74	Integral point sets in higher dimensional affine spaces over finite fields. Journal of Combinatorial Theory - Series A, 2009, 116, 1120-1139.	0.5	4
75	Integral point sets over <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si40.gif" display="inline" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mi mathvariant="double-struck">Z </mml:mi </mml:mrow> <mml:mrow> <mml:mi> n</mml:mi> </mml:mrow> <mr Discrete Applied Mathematics, 2009, 157, 2105-2117.</mr </mml:msubsup></mml:math>	nl:mr8\$\$> <r< td=""><td>nml<mark>?</mark>mi>m</td></r<>	nml <mark>?</mark> mi>m
76	Maximal integral point sets in affine planes over finite fields. Discrete Mathematics, 2009, 309, 4564-4575.	0.4	9
77	There Are Integral Heptagons, no Three Points on a Line, no Four on a Circle. Discrete and Computational Geometry, 2008, 39, 786-790.	0.4	25
78	Construction of Large Constant Dimension Codes with a Prescribed Minimum Distance. Lecture Notes in Computer Science, 2008, , 31-42.	1.0	74
79	Integral point sets over. Electronic Notes in Discrete Mathematics, 2006, 27, 65-66. A bijection between the <mml:math <="" altimg="si1.gif" overflow="scroll" td=""><td>0.4</td><td>3</td></mml:math>	0.4	3
80	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	0.5	0
81	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/x Optimal Opinion Control: The Campaign Problem. SSRN Electronic Journal, 0, , .	0.4	10
82	The Power of the Largest Player. SSRN Electronic Journal, 0, , .	0.4	0
83	Are Weighted Games Sufficiently Good for Binary Voting?. Homo Oeconomicus, 0, , 1.	0.2	0
84	The Inverse Problem for Power Distributions in Committees. SSRN Electronic Journal, 0, , .	0.4	6
85	Optimal Control of the Convergence Time in the Hegselmann-Krause Dynamics. SSRN Electronic Journal, 0, , .	0.4	1
86	Dimension of the Lisbon Voting Rules in the EU Council: A Challenge and New World Record. SSRN Electronic Journal, 0, , .	0.4	3
87	Generalized Roll-Call Model for the Shapley-Shubik Index. SSRN Electronic Journal, 0, , .	0.4	2
88	Characterization of Threshold Functions: State of the Art, Some New Contributions and Open Problems. SSRN Electronic Journal, 0, , .	0.4	1
89	On the Democratic Weights of Nations. SSRN Electronic Journal, 0, , .	0.4	7
90	Bounds for the Diameter of the Weight Polytope. SSRN Electronic Journal, 0, , .	0.4	2

#	Article	IF	CITATIONS
91	An Axiomatization of the Shapley-Shubik Index for Interval Decisions. SSRN Electronic Journal, 0, , .	0.4	1
92	The Nucleolus of Large Majority Games. SSRN Electronic Journal, O, , .	0.4	1
93	Measuring Voting Power in Convex Policy Spaces. SSRN Electronic Journal, 0, , .	0.4	1
94	The Cost of Getting Local Monotonicity. SSRN Electronic Journal, 0, , .	0.4	0
95	Classes of Complete Simple Games that are All Weighted. SSRN Electronic Journal, 0, , .	0.4	Ο
96	Enumeration of Weighted Games with Minimum and an Analysis of Voting Power for Bipartite Complete Games with Minimum. SSRN Electronic Journal, 0, , .	0.4	0
97	The Golden Number and Fibonacci Sequences in the Design of Voting Structures. SSRN Electronic Journal, 0, , .	0.4	Ο
98	The Average Representation - A Cornucopia of Power Indices?. SSRN Electronic Journal, 0, , .	0.4	0
99	Mostly Sunny: A Forecast of Tomorrow's Power Index Research. SSRN Electronic Journal, 0, , .	0.4	6
100	How Long Does it Take to Consensus in the Hegselmann-Krause Model?. SSRN Electronic Journal, 0, , .	0.4	0
101	Representation-Compatible Power Indices. SSRN Electronic Journal, 0, , .	0.4	Ο
102	Fair Representation and a Linear Shapley Rule. SSRN Electronic Journal, 0, , .	0.4	0
103	Weighted Committee Games. SSRN Electronic Journal, 0, , .	0.4	Ο
104	Bounds for the Nakamura Number. SSRN Electronic Journal, 0, , .	0.4	0
105	A Note on Limit Results for the Penrose-Banzhaf Index. SSRN Electronic Journal, 0, , .	0.4	2
106	Influence in Systems with Convex Decisions. SSRN Electronic Journal, 0, , .	0.4	0
107	Simple Games Versus Weighted Voting Games: Bounding the Critical Threshold Value. SSRN Electronic Journal, 0, , .	0.4	2
108	Approximating Power by Weights. SSRN Electronic Journal, 0, , .	0.4	1

#	Article	IF	CITATIONS
109	Which Criteria Qualify Power Indices for Applications? A Comment to 'The Story of the Poor Public Good Index'. SSRN Electronic Journal, 0, , .	0.4	1
110	Simple Games Versus Weighted Voting Games. SSRN Electronic Journal, 0, , .	0.4	1