Manolis I A Lourakis

List of Publications by Citations

Source: https://exaly.com/author-pdf/9382022/manolis-i-a-lourakis-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

33 1,175 14 34 g-index

36 1,432 2.8 4.76 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
33	SBA. ACM Transactions on Mathematical Software, 2009 , 36, 1-30	2.3	393
32	Toward automated generation of parametric BIMs based on hybrid video and laser scanning data. <i>Advanced Engineering Informatics</i> , 2010 , 24, 456-465	7.4	126
31	Automated as-built 3D reconstruction of civil infrastructure using computer vision: Achievements, opportunities, and challenges. <i>Advanced Engineering Informatics</i> , 2015 , 29, 149-161	7.4	108
30	T-LESS: An RGB-D Dataset for 6D Pose Estimation of Texture-Less Objects 2017,		103
29	Real-Time Tracking of Multiple Skin-Colored Objects with a Possibly Moving Camera. <i>Lecture Notes in Computer Science</i> , 2004 , 368-379	0.9	88
28	Vision-Based Interpretation of Hand Gestures for Remote Control of a Computer Mouse. <i>Lecture Notes in Computer Science</i> , 2006 , 40-51	0.9	59
27	High-Performance Embedded Computing in Space: Evaluation of Platforms for Vision-Based Navigation. <i>Journal of Aerospace Information Systems</i> , 2018 , 15, 178-192	1	45
26	Detection and fine 3D pose estimation of texture-less objects in RGB-D images 2015 ,		34
25	Model-Based Pose Estimation for Rigid Objects. <i>Lecture Notes in Computer Science</i> , 2013 , 83-92	0.9	25
24	HW/SW Codesign and FPGA Acceleration of Visual Odometry Algorithms for Rover Navigation on Mars. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2016 , 26, 1563-1577	6.4	24
23	Efficient, causal camera tracking in unprepared environments. <i>Computer Vision and Image Understanding</i> , 2005 , 99, 259-290	4.3	21
22	Tracking of Human Hands and Faces through Probabilistic Fusion of Multiple Visual Cues 2008 , 33-42		18
21	Sparse Non-linear Least Squares Optimization for Geometric Vision. <i>Lecture Notes in Computer Science</i> , 2010 , 43-56	0.9	15
20	Modified Rodrigues Parameters: An Efficient Representation of Orientation in 3D Vision and Graphics. <i>Journal of Mathematical Imaging and Vision</i> , 2018 , 60, 422-442	1.6	15
19	Three-dimensional tracking of multiple skin-colored regions by a moving stereoscopic system. <i>Applied Optics</i> , 2004 , 43, 366-78	1.7	11
18	Feature transfer and matching in disparate stereo views through the use of plane homographies. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2003 , 25, 271-276	13.3	10
17	Accurate Scale Factor Estimation in 3D Reconstruction. <i>Lecture Notes in Computer Science</i> , 2013 , 498-50	06 0.9	10

LIST OF PUBLICATIONS

16	High-Performance Vision-Based Navigation on SoC FPGA for Spacecraft Proximity Operations. <i>IEEE Transactions on Circuits and Systems for Video Technology</i> , 2020 , 30, 1188-1202	6.4	10
15	Correspondence-free pose estimation for 3D objects from noisy depth data. <i>Visual Computer</i> , 2018 , 34, 193-211	2.3	9
14	3D Object Pose Refinement in Range Images. Lecture Notes in Computer Science, 2015, 263-274	0.9	9
13	SPARTAN/SEXTANT/COMPASS: Advancing Space Rover Vision via Reconfigurable Platforms. <i>Lecture Notes in Computer Science</i> , 2015 , 475-486	0.9	7
12	Model-based visual tracking of orbiting satellites using edges 2017,		6
11	An efficient solution to absolute orientation 2016 ,		4
10	Horizon matching for localizing unordered panoramic images. <i>Computer Vision and Image Understanding</i> , 2010 , 114, 274-285	4.3	4
9	A Consistently Fast and Globally Optimal Solution to the Perspective-n-Point Problem. <i>Lecture Notes in Computer Science</i> , 2020 , 478-494	0.9	4
8	Single- and Multi-FPGA Acceleration of Dense Stereo Vision for Planetary Rovers. <i>Transactions on Embedded Computing Systems</i> , 2019 , 18, 1-27	1.8	3
7	Efficient Absolute Orientation Revisited 2018,		3
6	Countering drift in Visual Odometry for planetary rovers by registering boulders in ground and orbital images 2015 ,		2
5	A System for Geometrically Constrained Single View Reconstruction 2008 , 193-205		2
4	Project HIPNOS: Case Study of High Performance Avionics for Active Debris Removal in Space 2017,		2
3	3D Pose Refinement Using Rendering and Texture-Based Matching. <i>Lecture Notes in Computer Science</i> , 2014 , 672-679	0.9	2
2	Parallel Robust Absolute Orientation on FPGA for Vision and Robotics 2018,		1
1	Detection of Physical Strain and Fatigue in Industrial Environments Using Visual and Non-Visual Low-Cost Sensors. <i>Technologies</i> , 2022 , 10, 42	2.4	1