Chanhee Boo

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9381759/chanhee-boo-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

36 3,358 40 24 h-index g-index citations papers 11.2 4,093 40 5.94 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
36	Simultaneous retention of organic and inorganic contaminants by a ceramic nanofiltration membrane for the treatment of semiconductor wastewater. <i>Chemical Engineering Research and Design</i> , 2022 , 159, 525-533	5.5	4
35	Investigating the potential of ammonium retention by graphene oxide ceramic nanofiltration membranes for the treatment of semiconductor wastewater. <i>Chemosphere</i> , 2022 , 286, 131745	8.4	8
34	Improving the feasibility and applicability of flow-electrode capacitive deionization (FCDI): Review of process optimization and energy efficiency. <i>Desalination</i> , 2021 , 502, 114930	10.3	22
33	Zwitterionic coating on thin-film composite membranes to delay gypsum scaling in reverse osmosis. Journal of Membrane Science, 2021 , 618, 118568	9.6	27
32	Removal of Emerging Wastewater Organic Contaminants by Polyelectrolyte Multilayer Nanofiltration Membranes with Tailored Selectivity. <i>ACS ES&T Engineering</i> , 2021 , 1, 404-414		13
31	Thermomorphic Hydrophilicity Base-Induced Precipitation for Effective Descaling of Hypersaline Brines. <i>ACS ES&T Engineering</i> , 2021 , 1, 1351-1359		3
30	Influence of Solute Molecular Diameter on Permeability-Selectivity Tradeoff of Thin-Film Composite Polyamide Membranes in Aqueous Separations. <i>Water Research</i> , 2021 , 201, 117311	12.5	6
29	Zero Liquid Discharge of Ultrahigh-Salinity Brines with Temperature Swing Solvent Extraction. <i>Environmental Science & Environmental Science & Environ</i>	10.3	20
28	Novel Isothermal Membrane Distillation with Acidic Collector for Selective and Energy-Efficient Recovery of Ammonia from Urine. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 7324-7334	8.3	16
27	Transport and structural properties of osmotic membranes in high-salinity desalination using cascading osmotically mediated reverse osmosis. <i>Desalination</i> , 2020 , 479, 114335	10.3	17
26	Surface functionalization of reverse osmosis membranes with sulfonic groups for simultaneous mitigation of silica scaling and organic fouling. <i>Water Research</i> , 2020 , 185, 116203	12.5	22
25	Water deoxygenation using a hollow fiber membrane contactor to prevent pipe corrosion for sustainable management of district heating systems: A pilot-scale study. <i>Journal of Cleaner Production</i> , 2020 , 277, 124049	10.3	4
24	Engineering Carbon Nanotube Forest Superstructure for Robust Thermal Desalination Membranes. <i>Advanced Functional Materials</i> , 2019 , 29, 1903125	15.6	31
23	Low-temperature heat utilization with vapor pressure-driven osmosis: Impact of membrane properties on mass and heat transfer. <i>Journal of Membrane Science</i> , 2019 , 588, 117181	9.6	9
22	Membrane-less and Non-Evaporative Desalination of Hypersaline Brines by Temperature Swing Solvent Extraction. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 359-364	11	25
21	High-Performance Thin-Film Composite Membrane with an Ultrathin Spray-Coated Carbon Nanotube Interlayer. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 243-248	11	122
20	Membrane distillation at the water-energy nexus: limits, opportunities, and challenges. <i>Energy and Environmental Science</i> , 2018 , 11, 1177-1196	35.4	458

(2013-2018)

19	Antibiotic Resistance Genes from Wastewater Effluent. <i>Environmental Science & Environmental Science &</i>	10.3	101
18	Engineered Slippery Surface to Mitigate Gypsum Scaling in Membrane Distillation for Treatment of Hypersaline Industrial Wastewaters. <i>Environmental Science & Environmental Sc</i>	10.3	86
17	Relating Organic Fouling in Membrane Distillation to Intermolecular Adhesion Forces and Interfacial Surface Energies. <i>Environmental Science & Energies</i> , 2018, 52, 14198-14207	10.3	56
16	High Performance Nanofiltration Membrane for Effective Removal of Perfluoroalkyl Substances at High Water Recovery. <i>Environmental Science & Environmental Science & Environme</i>	10.3	112
15	Self-cleaning anti-fouling hybrid ultrafiltration membranes via side chain grafting of poly(aryl ether sulfone) and titanium dioxide. <i>Journal of Membrane Science</i> , 2017 , 529, 1-10	9.6	81
14	Post-fabrication modification of electrospun nanofiber mats with polymer coating for membrane distillation applications. <i>Journal of Membrane Science</i> , 2017 , 530, 158-165	9.6	70
13	Thermal desalination membranes: Carbon nanotubes keep up the heat. <i>Nature Nanotechnology</i> , 2017 , 12, 501-503	28.7	48
12	Relating Silica Scaling in Reverse Osmosis to Membrane Surface Properties. <i>Environmental Science & Environmental Science</i>	10.3	84
11	Omniphobic Polyvinylidene Fluoride (PVDF) Membrane for Desalination of Shale Gas Produced Water by Membrane Distillation. <i>Environmental Science & Environmental Science & Env</i>	10.3	232
10	Engineering Surface Energy and Nanostructure of Microporous Films for Expanded Membrane Distillation Applications. <i>Environmental Science & Energy and Science & Environmental Science & Environmental</i>	10.3	151
9	Development of Omniphobic Desalination Membranes Using a Charged Electrospun Nanofiber Scaffold. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 11154-61	9.5	169
8	Engineering flat sheet microporous PVDF films for membrane distillation. <i>Journal of Membrane Science</i> , 2015 , 492, 355-363	9.6	98
7	Membrane-based osmotic heat engine with organic solvent for enhanced power generation from low-grade heat. <i>Environmental Science & Environmental Scie</i>	10.3	67
6	Performance evaluation of trimethylaminedarbon dioxide thermolytic draw solution for engineered osmosis. <i>Journal of Membrane Science</i> , 2015 , 473, 302-309	9.6	86
5	Omniphobic Membrane for Robust Membrane Distillation. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 443-447	11	224
4	Bidirectional diffusion of ammonium and sodium cations in forward osmosis: role of membrane active layer surface chemistry and charge. <i>Environmental Science & Environmental & Enviro</i>	10.3	85
3	Modeling of colloidal fouling in forward osmosis membrane: Effects of reverse draw solution permeation. <i>Desalination</i> , 2013 , 314, 115-123	10.3	38
2	Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation. <i>Journal of Membrane Science</i> , 2013 , 444, 148-156	9.6	188

Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). *Journal of Membrane Science*, **2010**, 365, 34-39

9.6 568