
Chanhee Boo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9381759/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Membrane distillation at the water-energy nexus: limits, opportunities, and challenges. Energy and Environmental Science, 2018, 11, 1177-1196.	15.6	740
2	Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). Journal of Membrane Science, 2010, 365, 34-39.	4.1	645
3	Omniphobic Polyvinylidene Fluoride (PVDF) Membrane for Desalination of Shale Gas Produced Water by Membrane Distillation. Environmental Science & Technology, 2016, 50, 12275-12282.	4.6	307
4	Omniphobic Membrane for Robust Membrane Distillation. Environmental Science and Technology Letters, 2014, 1, 443-447.	3.9	288
5	Development of Omniphobic Desalination Membranes Using a Charged Electrospun Nanofiber Scaffold. ACS Applied Materials & Interfaces, 2016, 8, 11154-11161.	4.0	218
6	High Performance Nanofiltration Membrane for Effective Removal of Perfluoroalkyl Substances at High Water Recovery. Environmental Science & Technology, 2018, 52, 7279-7288.	4.6	218
7	Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation. Journal of Membrane Science, 2013, 444, 148-156.	4.1	214
8	Engineering Surface Energy and Nanostructure of Microporous Films for Expanded Membrane Distillation Applications. Environmental Science & Technology, 2016, 50, 8112-8119.	4.6	203
9	High-Performance Thin-Film Composite Membrane with an Ultrathin Spray-Coated Carbon Nanotube Interlayer. Environmental Science and Technology Letters, 2018, 5, 243-248.	3.9	176
10	Photocatalytic Reactive Ultrafiltration Membrane for Removal of Antibiotic Resistant Bacteria and Antibiotic Resistance Genes from Wastewater Effluent. Environmental Science & Technology, 2018, 52, 8666-8673.	4.6	157
11	Engineered Slippery Surface to Mitigate Gypsum Scaling in Membrane Distillation for Treatment of Hypersaline Industrial Wastewaters. Environmental Science & Technology, 2018, 52, 14362-14370.	4.6	148
12	Relating Silica Scaling in Reverse Osmosis to Membrane Surface Properties. Environmental Science & Technology, 2017, 51, 4396-4406.	4.6	136
13	Engineering flat sheet microporous PVDF films for membrane distillation. Journal of Membrane Science, 2015, 492, 355-363.	4.1	118
14	Self-cleaning anti-fouling hybrid ultrafiltration membranes via side chain grafting of poly(aryl ether) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf 5 104
15	Performance evaluation of trimethylamine–carbon dioxide thermolytic draw solution for engineered osmosis. Journal of Membrane Science, 2015, 473, 302-309.	4.1	100
16	Bidirectional Diffusion of Ammonium and Sodium Cations in Forward Osmosis: Role of Membrane Active Laver Surface Chemistry and Charge, Environmental Science & Amp: Technology, 2014, 48,	4.6	95

16	Active Layer Surface Chemistry and Charge. Environmental Science & Technology, 2014, 48, 14369-14376.	4.6	95	
17	Post-fabrication modification of electrospun nanofiber mats with polymer coating for membrane distillation applications. Journal of Membrane Science, 2017, 530, 158-165.	4.1	91	
18	Relating Organic Fouling in Membrane Distillation to Intermolecular Adhesion Forces and Interfacial	4.6	87	

¹⁸ Surface Energies. Environmental Science & amp; Technology, 2018, 52, 14198-14207.

Chanhee Boo

#	Article	IF	CITATIONS
19	Membrane-Based Osmotic Heat Engine with Organic Solvent for Enhanced Power Generation from Low-Grade Heat. Environmental Science & Technology, 2015, 49, 5820-5827.	4.6	76
20	Improving the feasibility and applicability of flow-electrode capacitive deionization (FCDI): Review of process optimization and energy efficiency. Desalination, 2021, 502, 114930.	4.0	64
21	Carbon nanotubes keep up the heat. Nature Nanotechnology, 2017, 12, 501-503.	15.6	62
22	Inorganic Scaling in Membrane Desalination: Models, Mechanisms, and Characterization Methods. Environmental Science & Technology, 2022, 56, 7484-7511.	4.6	60
23	Zwitterionic coating on thin-film composite membranes to delay gypsum scaling in reverse osmosis. Journal of Membrane Science, 2021, 618, 118568.	4.1	58
24	Membrane-less and Non-Evaporative Desalination of Hypersaline Brines by Temperature Swing Solvent Extraction. Environmental Science and Technology Letters, 2019, 6, 359-364.	3.9	54
25	Zero Liquid Discharge of Ultrahigh-Salinity Brines with Temperature Swing Solvent Extraction. Environmental Science & Technology, 2020, 54, 9124-9131.	4.6	52
26	Surface functionalization of reverse osmosis membranes with sulfonic groups for simultaneous mitigation of silica scaling and organic fouling. Water Research, 2020, 185, 116203.	5.3	50
27	Novel Isothermal Membrane Distillation with Acidic Collector for Selective and Energy-Efficient Recovery of Ammonia from Urine. ACS Sustainable Chemistry and Engineering, 2020, 8, 7324-7334.	3.2	49
28	Engineering Carbon Nanotube Forest Superstructure for Robust Thermal Desalination Membranes. Advanced Functional Materials, 2019, 29, 1903125.	7.8	48
29	Modeling of colloidal fouling in forward osmosis membrane: Effects of reverse draw solution permeation. Desalination, 2013, 314, 115-123.	4.0	43
30	Removal of Emerging Wastewater Organic Contaminants by Polyelectrolyte Multilayer Nanofiltration Membranes with Tailored Selectivity. ACS ES&T Engineering, 2021, 1, 404-414.	3.7	41
31	Transport and structural properties of osmotic membranes in high-salinity desalination using cascading osmotically mediated reverse osmosis. Desalination, 2020, 479, 114335.	4.0	31
32	Investigating the potential of ammonium retention by graphene oxide ceramic nanofiltration membranes for the treatment of semiconductor wastewater. Chemosphere, 2022, 286, 131745.	4.2	26
33	Simultaneous retention of organic and inorganic contaminants by a ceramic nanofiltration membrane for the treatment of semiconductor wastewater. Chemical Engineering Research and Design, 2022, 159, 525-533.	2.7	25
34	Influence of Solute Molecular Diameter on Permeability-Selectivity Tradeoff of Thin-Film Composite Polyamide Membranes in Aqueous Separations. Water Research, 2021, 201, 117311.	5.3	20
35	Thermomorphic Hydrophilicity Base-Induced Precipitation for Effective Descaling of Hypersaline Brines. ACS ES&T Engineering, 2021, 1, 1351-1359.	3.7	11
36	Low-temperature heat utilization with vapor pressure-driven osmosis: Impact of membrane properties on mass and heat transfer. Journal of Membrane Science, 2019, 588, 117181.	4.1	10

#	Article	IF	CITATIONS
37	Water deoxygenation using a hollow fiber membrane contactor to prevent pipe corrosion for sustainable management of district heating systems: A pilot-scale study. Journal of Cleaner Production, 2020, 277, 124049.	4.6	10
38	Multifunctional photo-Fenton-active membrane for solar-driven water purification. Journal of Membrane Science, 2022, 660, 120832.	4.1	10
39	Elucidating the Roles of Polyamide Layer Structural Properties in the Permeability–Selectivity Tradeoff Governing Aqueous Separations. ACS ES&T Engineering, 2022, 2, 1857-1870.	3.7	4