
## M Carmen RomÃ;n-MartÃ-nez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9381602/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Solid matter and soluble compounds collected from cigarette smoke and heated tobacco product aerosol using a laboratory designed puffing setup. Environmental Research, 2022, 206, 112619.                                                      | 7.5  | 3         |
| 2  | Chemical Activation of Lignocellulosic Precursors and Residues: What Else to Consider?. Molecules, 2022, 27, 1630.                                                                                                                              | 3.8  | 19        |
| 3  | Enhancement of the TiO2 photoactivity for propene oxidation by carbon incorporation using saccharose in hydrothermal synthesis. Journal of Environmental Chemical Engineering, 2021, 9, 104941.                                                 | 6.7  | 6         |
| 4  | TiO2 and TiO2-Carbon Hybrid Photocatalysts for Diuron Removal from Water. Catalysts, 2021, 11, 457.                                                                                                                                             | 3.5  | 5         |
| 5  | Ru Catalysts Supported on Commercial and Biomass-Derived Activated Carbons for the<br>Transformation of Levulinic Acid into γ-Valerolactone under Mild Conditions. Catalysts, 2021, 11, 559.                                                    | 3.5  | 9         |
| 6  | Design of carbon supports for metal-catalyzed acetylene hydrochlorination. Nature Communications, 2021, 12, 4016.                                                                                                                               | 12.8 | 35        |
| 7  | Advantages of the Incorporation of Luffa-Based Activated Carbon to Titania for Improving the<br>Removal of Methylene Blue from Aqueous Solution. Applied Sciences (Switzerland), 2021, 11, 7607.                                                | 2.5  | 4         |
| 8  | Comparison of particulate matter emission and soluble matter collected from combustion cigarettes<br>and heated tobacco products using a setup designed to simulate puffing regimes. Chemical<br>Engineering Journal Advances, 2021, 8, 100144. | 5.2  | 6         |
| 9  | Heterogenization of a Chiral Molecular Catalyst on a Carbon Support using Tryptophan as Anchor<br>Molecule. European Journal of Inorganic Chemistry, 2021, 2021, 223-225.                                                                       | 2.0  | 2         |
| 10 | Impact of TiO2 Surface Defects on the Mechanism of Acetaldehyde Decomposition under Irradiation of a Fluorescent Lamp. Catalysts, 2021, 11, 1281.                                                                                               | 3.5  | 5         |
| 11 | Photocatalytic Oxidation of Propane Using Hydrothermally Prepared Anatase-Brookite-Rutile TiO2<br>Samples. An In Situ DRIFTS Study. Nanomaterials, 2020, 10, 1314.                                                                              | 4.1  | 8         |
| 12 | Mesoporous Activated Carbon Supported Ru Catalysts to Efficiently Convert Cellulose into Sorbitol<br>by Hydrolytic Hydrogenation. Energies, 2020, 13, 4394.                                                                                     | 3.1  | 7         |
| 13 | Unraveling Toluene Conversion during the Liquid Phase Hydrogenation of Cyclohexene (in Toluene)<br>with Rh Hybrid Catalysts. Catalysts, 2019, 9, 973.                                                                                           | 3.5  | 2         |
| 14 | Cellulose hydrolysis catalysed by mesoporous activated carbons functionalized under mild conditions. SN Applied Sciences, 2019, 1, 1.                                                                                                           | 2.9  | 12        |
| 15 | TiO2 Modification with Transition Metallic Species (Cr, Co, Ni, and Cu) for Photocatalytic Abatement of Acetic Acid in Liquid Phase and Propene in Gas Phase. Materials, 2019, 12, 40.                                                          | 2.9  | 21        |
| 16 | One step hydrothermal synthesis of TiO2 with variable HCl concentration: Detailed characterization and photocatalytic activity in propene oxidation. Applied Catalysis B: Environmental, 2018, 220, 645-653.                                    | 20.2 | 61        |
| 17 | Effect of the Preparation Method (Sol-Gel or Hydrothermal) and Conditions on the TiO2 Properties and Activity for Propene Oxidation. Materials, 2018, 11, 2227.                                                                                 | 2.9  | 40        |
| 18 | Carbon-Black-Supported Ru Catalysts for the Valorization of Cellulose through Hydrolytic<br>Hydrogenation. Catalysts, 2018, 8, 572.                                                                                                             | 3.5  | 19        |

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Significant porosity effects in carbon based SILP chiral catalysts. Molecular Catalysis, 2018, 453, 31-38.                                                                                              | 2.0  | 4         |
| 20 | Cu/TiO 2 photocatalysts for the conversion of acetic acid into biogas and hydrogen. Catalysis Today, 2017, 287, 78-84.                                                                                  | 4.4  | 26        |
| 21 | Enhancement of the hydrogenation activity of a Pd-tridecilamine (TDA) complex by confinement in carbon nanotubes. Microporous and Mesoporous Materials, 2016, 225, 378-384.                             | 4.4  | 6         |
| 22 | Support effects on SILP hybrid catalysts prepared with carbon materials and the RhCOD complex. RSC Advances, 2016, 6, 100976-100983.                                                                    | 3.6  | 5         |
| 23 | New hybrid materials based on the grafting of Pd( <scp>ii</scp> )-amino complexes on the graphitic surface of AC: preparation, structures and catalytic properties. RSC Advances, 2016, 6, 58247-58259. | 3.6  | 8         |
| 24 | Structured carbons as supports for hydrogenation hybrid catalysts prepared by the immobilization of a Rh diamine complex. Chemical Engineering Journal, 2016, 291, 47-54.                               | 12.7 | 10        |
| 25 | Non-covalent immobilization of RhDuphos on carbon nanotubes and carbon xerogels. Applied<br>Catalysis A: General, 2014, 478, 194-203.                                                                   | 4.3  | 7         |
| 26 | Chiral rhodium complexes covalently anchored on carbon nanotubes for enantioselective hydrogenation. Dalton Transactions, 2014, 43, 7455.                                                               | 3.3  | 37        |
| 27 | Insight into the immobilization of ionic liquids on porous carbons. Carbon, 2014, 77, 947-957.                                                                                                          | 10.3 | 40        |
| 28 | Heterogenization of Homogeneous Catalysts on Carbon Materials. , 2013, , 55-78.                                                                                                                         |      | 13        |
| 29 | Low metal content Co and Ni alumina supported catalysts for the CO2 reforming of methane.<br>International Journal of Hydrogen Energy, 2013, 38, 2230-2239.                                             | 7.1  | 84        |
| 30 | Support effects in a Rh diamine complex heterogenized on carbon materials. ChemCatChem, 2013, 5, 1587-1597.                                                                                             | 3.7  | 10        |
| 31 | Influence of Pt addition to Ni catalysts on the catalytic performance for long term dry reforming of methane. Applied Catalysis A: General, 2012, 435-436, 10-18.                                       | 4.3  | 71        |
| 32 | Fundamentals of vapors adsorption onto activated carbon fibers assessed by the comparative analysis of N2 and CO2 adsorption. Separation and Purification Technology, 2012, 85, 83-89.                  | 7.9  | 5         |
| 33 | Ligand Tethering by Ion-Exchange for the Immobilization of Homogeneous Catalysts. Current Catalysis, 2012, 1, 100-106.                                                                                  | 0.5  | 4         |
| 34 | Effect of counteranion of ammonium salts on the synthesis of porous nanoparticles<br>(NH4)3[PMo12O40]. Solid State Sciences, 2011, 13, 30-37.                                                           | 3.2  | 9         |
| 35 | K and Sr promoted Co alumina supported catalysts for the CO2 reforming of methane. Catalysis Today, 2011, 176, 187-190.                                                                                 | 4.4  | 47        |
| 36 | Immobilization of a Rh complex derived from the Wilkinson's catalyst on activated carbon and carbon nand carbon<br>nanotubes. Applied Catalysis A: General, 2011, 402, 132-138.                         | 4.3  | 16        |

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Hybrid Rh catalysts prepared with carbon nanotubes of different inner diameter. Microporous and<br>Mesoporous Materials, 2011, 139, 164-172.                                                                                        | 4.4  | 17        |
| 38 | Immobilization of homogeneous catalysts in nanostructured carbon xerogels. Studies in Surface<br>Science and Catalysis, 2010, , 647-651.                                                                                            | 1.5  | 6         |
| 39 | Effects of compression on the textural properties of porous solids. Microporous and Mesoporous Materials, 2009, 126, 291-301.                                                                                                       | 4.4  | 37        |
| 40 | Nickel catalyst activation in the carbon dioxide reforming of methane. Applied Catalysis A: General, 2009, 355, 27-32.                                                                                                              | 4.3  | 135       |
| 41 | Ni, Co and bimetallic Ni–Co catalysts for the dry reforming of methane. Applied Catalysis A: General,<br>2009, 371, 54-59.                                                                                                          | 4.3  | 379       |
| 42 | Hybrid Catalysts Based on Carbon Nanotubes and Nanofibres. Journal of Nanoscience and Nanotechnology, 2009, 9, 6034-6041.                                                                                                           | 0.9  | 14        |
| 43 | Effects of confinement in hybrid diamine-Rh complex-carbon catalysts used for hydrogenation reactions. Microporous and Mesoporous Materials, 2008, 109, 305-316.                                                                    | 4.4  | 25        |
| 44 | Upper limit of hydrogen adsorption on activated carbons at room temperature: A thermodynamic<br>approach to understand the hydrogen adsorption on microporous carbons. Microporous and<br>Mesoporous Materials, 2008, 112, 510-520. | 4.4  | 18        |
| 45 | State of Pt in Dried and Reduced PtIn and PtSn Catalysts Supported on Carbon. Journal of Physical<br>Chemistry C, 2007, 111, 4710-4716.                                                                                             | 3.1  | 30        |
| 46 | Catalytic properties of a Rh–diamine complex anchored on activated carbon: Effect of different<br>surface oxygen groups. Applied Catalysis A: General, 2007, 331, 26-33.                                                            | 4.3  | 48        |
| 47 | Exploiting the surface –OH groups on activated carbons and carbon nanotubes for the immobilization of a Rh complex. Carbon, 2006, 44, 605-608.                                                                                      | 10.3 | 20        |
| 48 | Effect of potassium content in the activity of K-promoted Ni/Al2O3 catalysts for the dry reforming of methane. Applied Catalysis A: General, 2006, 301, 9-15.                                                                       | 4.3  | 208       |
| 49 | Carbon-supported PtSn Catalysts: Characterization and Catalytic Properties. Journal of the Japan<br>Petroleum Institute, 2004, 47, 164-178.                                                                                         | 0.6  | 7         |
| 50 | Rhodium-diphosphine complex bound to activated carbon. Journal of Molecular Catalysis A, 2004, 213,<br>177-182.                                                                                                                     | 4.8  | 42        |
| 51 | Ligand adsorption on different activated carbon materials for catalyst anchorage. Carbon, 2004, 42,<br>1357-1361.                                                                                                                   | 10.3 | 15        |
| 52 | Catalytic activity and characterization of Ni/Al2O3 and NiK/Al2O3 catalysts for CO2 methane reforming. Applied Catalysis A: General, 2004, 264, 169-174.                                                                            | 4.3  | 116       |
| 53 | Activated-Carbon-Heterogenized [PdCl2(NH2(CH2)12CH3)2] for the Selective Hydrogenation of 1-Heptyne. Catalysis Letters, 2003, 87, 97-101.                                                                                           | 2.6  | 18        |
| 54 | A TEOM-MS study on the interaction of N2O with a hydrotalcite-derived multimetallic mixed oxide catalyst. Applied Catalysis A: General, 2002, 225, 87-100.                                                                          | 4.3  | 14        |

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | [Rh(μ-Cl)(COD)] 2 supported on activated carbons for the hydroformylation of 1-octene: effects of support surface chemistry and solvent. Journal of Molecular Catalysis A, 2001, 170, 81-93.         | 4.8  | 23        |
| 56 | Highly Active Catalyst from [PdCl2(NH2(CH2)12CH3)2] on NH4ZSM-5. Catalysis Letters, 2001, 76, 41-43.                                                                                                 | 2.6  | 6         |
| 57 | Long-Chain-Amine Metal Complexes as Hydrogenation Catalysts. Heterogenisation on Activated<br>Carbon. Catalysis Letters, 2001, 77, 41-46.                                                            | 2.6  | 7         |
| 58 | Effect of the support in Pt and PtSn catalysts used for selective hydrogenation of carvone. Catalysis<br>Today, 2001, 66, 289-295.                                                                   | 4.4  | 30        |
| 59 | Strategies for the heterogenization of rhodium complexes on activated carbon. Studies in Surface<br>Science and Catalysis, 2000, 143, 295-304.                                                       | 1.5  | 10        |
| 60 | Comparison of hydrogen adsorption abilities of platinum-loaded carbon fibers prepared using two<br>different methods. Carbon, 2000, 38, 778-780.                                                     | 10.3 | 19        |
| 61 | [PdCl2(NH2(CH2)12CH3)2] supported on an active carbon: effect of the carbon properties on the catalytic activity of cyclohexene hydrogenation. Journal of Molecular Catalysis A, 2000, 153, 243-256. | 4.8  | 36        |
| 62 | XAFS Study of Dried and Reduced PtSn/C Catalysts: Nature and Structure of the Catalytically Active Phase. Langmuir, 2000, 16, 1123-1131.                                                             | 3.5  | 32        |
| 63 | Characterization of Bimetallic PtSn Catalysts Supported on Purified and H2O2-Functionalized Carbons Used for Hydrogenation Reactions. Journal of Catalysis, 1999, 184, 514-525.                      | 6.2  | 72        |
| 64 | N2O decomposition on hydrotalcite based catalysts. A mechanistic approach. , 1999, , 343-348.                                                                                                        |      | 1         |
| 65 | States of Pt in Pt/C catalyst precursors after impregnation, drying and reduction steps. Applied Catalysis A: General, 1998, 170, 93-103.                                                            | 4.3  | 92        |
| 66 | The effects of hydrogen on thermal desorption of oxygen surface complexes. Carbon, 1997, 35, 543-554.                                                                                                | 10.3 | 81        |
| 67 | Preparation of platinum loaded carbon fiber by using a polymer blend. Carbon, 1997, 35, 1676-1677.                                                                                                   | 10.3 | 17        |
| 68 | Structure Sensitivity of CO2Hydrogenation Reaction Catalyzed by Pt/Carbon Catalysts. Langmuir, 1996, 12, 379-385.                                                                                    | 3.5  | 20        |
| 69 | Structural study of a phenolformaldehyde char. Carbon, 1996, 34, 719-727.                                                                                                                            | 10.3 | 28        |
| 70 | Selective porosity development by calcium-catalyzed carbon gasification. Carbon, 1996, 34, 869-878.                                                                                                  | 10.3 | 42        |
| 71 | CO2 hydrogenation under pressure on catalysts Ptî—,Ca/C. Applied Catalysis A: General, 1996, 134, 159-167.                                                                                           | 4.3  | 16        |
| 72 | Metal-support interaction in Pt/C catalysts. Influence of the support surface chemistry and the metal precursor. Carbon, 1995, 33, 3-13.                                                             | 10.3 | 191       |

| #  | Article                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Carbon dioxide hydrogenation catalyzed by alkaline earth- and platinum-based catalysts supported on<br>carbon. Applied Catalysis A: General, 1994, 116, 187-204. | 4.3  | 21        |
| 74 | Tpd and TPR characterization of carbonaceous supports and Pt/C catalysts. Carbon, 1993, 31, 895-902.                                                             | 10.3 | 149       |