
## João Cc Abrantes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9381462/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                             | IF             | CITATIONS    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|
| 1  | Study of oxygen-ion conductivity and luminescence in the ZrO2– Nd2O3 system: Impact of local heterogeneity. Electrochimica Acta, 2022, 403, 139632.                                                                 | 2.6            | 11           |
| 2  | Hydration and phase development of recycled cement. Cement and Concrete Composites, 2022, 127, 104405.                                                                                                              | 4.6            | 38           |
| 3  | Combined Pretreatment by Ultrasound and Struvite Precipitation of Raw Substrates: A Strategy to<br>Overcome C/N Ratio Unbalance in Nitrogen-Rich Anaerobic Co-Digestion Systems. Sustainability, 2021,<br>13, 2175. | 1.6            | 4            |
| 4  | Effective production of multifunctional magnetic-sensitive biomaterial by an extrusion-based additive manufacturing technique. Biomedical Materials (Bristol), 2021, 16, 015011.                                    | 1.7            | 10           |
| 5  | Structure, conductivity and magnetism of orthorhombic and fluorite polymorphs in MoO3–Ln2O3 (Ln) Tj ETQc                                                                                                            | 110.784<br>1.6 | 3],4 rgBT /0 |
| 6  | Evolution of Oxygen–Ion and Proton Conductivity in Ca-Doped Ln2Zr2O7 (Ln = Sm, Gd), Located Near<br>Pyrochlore–Fluorite Phase Boundary. Materials, 2019, 12, 2452.                                                  | 1.3            | 24           |
| 7  | Surface functionalization of cuttlefish bone-derived biphasic calcium phosphate scaffolds with polymeric coatings. Materials Science and Engineering C, 2019, 105, 110014.                                          | 3.8            | 22           |
| 8  | Structure and conductivity of Nd <sub>6</sub> MoO <sub>12</sub> -based potential electron–proton conductors under dry and wet redox conditions. Inorganic Chemistry Frontiers, 2019, 6, 566-575.                    | 3.0            | 15           |
| 9  | Study of the dust produced in rehabilitation works. Procedia Structural Integrity, 2019, 22, 144-150.                                                                                                               | 0.3            | 2            |
| 10 | Novel sintering-free scaffolds obtained by additive manufacturing for concurrent bone regeneration and drug delivery: Proof of concept. Materials Science and Engineering C, 2019, 94, 426-436.                     | 3.8            | 35           |
| 11 | Influence of the Ca/P ratio and cooling rate on the allotropic α↔β-tricalcium phosphate phase transformations. Ceramics International, 2018, 44, 8249-8256.                                                         | 2.3            | 25           |
| 12 | Linking sintering stresses to nano modification in the microstructure of BaLa4Ti4O15 by transmission electron microscopy. Materials Characterization, 2018, 142, 1-8.                                               | 1.9            | 2            |
| 13 | Design of NiAl2O4 cellular monoliths for catalytic applications. Materials and Design, 2017, 117, 332-337.                                                                                                          | 3.3            | 12           |
| 14 | Injectable MnSr-doped brushite bone cements with improved biological performance. Journal of<br>Materials Chemistry B, 2017, 5, 2775-2787.                                                                          | 2.9            | 23           |
| 15 | Electrical characterization of La 9.33 Si 2 Ge 4 O 26 oxyapatite for prospective intermediate-temperature solid oxide fuel cells. Ceramics International, 2017, 43, 3847-3853.                                      | 2.3            | 5            |
| 16 | Biocompatibility and antimicrobial activity of biphasic calcium phosphate powders doped with metal ions for regenerative medicine. Ceramics International, 2017, 43, 15719-15728.                                   | 2.3            | 61           |
| 17 | Methodology for Analysis of the Reactivity of Coal Fly Ash Using Selective Dissolution by<br>Hydrofluoric Acid. Key Engineering Materials, 2016, 711, 1126-1133.                                                    | 0.4            | 5            |
| 18 | Statistical analysis of grain size distributions in pressure-assisted BaLa4Ti4O15 microstructures.<br>Microscopy and Microanalysis, 2016, 22, 36-37.                                                                | 0.2            | 0            |

JOãO CC ABRANTES

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effect of Pr3+/Pr4+ ratio on the oxygen ion transport and thermomechanical properties of the<br>pyrochlore and fluorite phases in the ZrO2–Pr2O3 system. International Journal of Hydrogen Energy,<br>2016, 41, 9982-9992. | 3.8 | 30        |
| 20 | Quality criteria for phase change materials selection. Energy Conversion and Management, 2016, 124, 598-606.                                                                                                               | 4.4 | 19        |
| 21 | Rheological Behavior of Paraffin-Alumina Emulsions and their Microstructural Effects. Materials<br>Science Forum, 2016, 869, 85-90.                                                                                        | 0.3 | 1         |
| 22 | Cellular MgAl2O4 spinels prepared by reactive sintering of emulsified suspensions. Materials Letters, 2016, 164, 190-193.                                                                                                  | 1.3 | 12        |
| 23 | Self-functionalization of cellular alumina monoliths in hydrothermal conditions. Journal of the<br>European Ceramic Society, 2016, 36, 1053-1058.                                                                          | 2.8 | 3         |
| 24 | Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach. Construction and Building Materials, 2016, 111, 98-104.                                       | 3.2 | 227       |
| 25 | Influence of Mg-doping, calcium pyrophosphate impurities and cooling rate on the allotropic α ↔<br>β-tricalcium phosphate phase transformations. Journal of the European Ceramic Society, 2016, 36,<br>817-827.            | 2.8 | 59        |
| 26 | Use of Electrochemical Impedance Spectroscopy (EIS) to monitoring the corrosion of reinforced concrete. Revista IBRACON De Estruturas E Materiais, 2015, 8, 529-546.                                                       | 0.3 | 85        |
| 27 | Porous hollow tubes processed by extrusion of ceramic emulsions. Applied Clay Science, 2015, 105-106, 60-65.                                                                                                               | 2.6 | 5         |
| 28 | Cellular ceramics by gelatin gelcasting of emulsified suspensions with sunflower oil. Journal of the European Ceramic Society, 2015, 35, 2577-2585.                                                                        | 2.8 | 22        |
| 29 | Extrusion of ceramic emulsions: Preparation and characterization of cellular ceramics. Applied Clay Science, 2015, 109-110, 15-21.                                                                                         | 2.6 | 5         |
| 30 | Hydrothermal synthesis of boehmite in cellular alumina monoliths for catalytic and separation applications. Journal of the European Ceramic Society, 2015, 35, 3119-3125.                                                  | 2.8 | 19        |
| 31 | Burnout effects on cellular ceramics obtained from gelatine gelcasted emulsified suspensions.<br>Journal of the European Ceramic Society, 2015, 35, 971-979.                                                               | 2.8 | 6         |
| 32 | Electrochemical behavior of the pyrochlore- and fluorite-like solid solutions in the Pr2O3–ZrO2 system. Part I. Solid State Ionics, 2015, 271, 79-85.                                                                      | 1.3 | 6         |
| 33 | Effects of Mn-doping on the structure and biological properties of β-tricalcium phosphate. Journal of<br>Inorganic Biochemistry, 2014, 136, 57-66.                                                                         | 1.5 | 75        |
| 34 | Extrusion of ceramic emulsions: Plastic behavior. Applied Clay Science, 2014, 101, 315-319.                                                                                                                                | 2.6 | 20        |
| 35 | Effect of Nb substitution for Ti on the electrical properties of Yb2Ti2O7-based oxygen ion conductors.<br>Solid State Ionics, 2014, 261, 131-140.                                                                          | 1.3 | 9         |
| 36 | Effects of processing parameters on cellular ceramics obtained by paraffin emulsified suspensions.<br>Ceramics International, 2014, 40, 9045-9053.                                                                         | 2.3 | 20        |

JOãO CC ABRANTES

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Highly conducting core–shell phase change materials for thermal regulation. Applied Thermal<br>Engineering, 2014, 66, 131-139.                                      | 3.0 | 8         |
| 38 | Extrusion of ceramic pastes: An alternative approach to obtain the Benbow× <sup>3</sup> s model parameters.<br>Ceramics International, 2014, 40, 14543-14547.       | 2.3 | 6         |
| 39 | Cellular ceramics processed by paraffin emulsified suspensions with collagen consolidation.<br>Materials Letters, 2013, 98, 120-123.                                | 1.3 | 27        |
| 40 | Gelled graphite/gelatin composites for latent heat cold storage. Applied Energy, 2013, 104, 890-897.                                                                | 5.1 | 11        |
| 41 | Solutions for Heat or Cold Discharge from Encapsulated Phase-Change Materials. Numerical Heat<br>Transfer, Part B: Fundamentals, 2013, 64, 421-435.                 | 0.6 | 8         |
| 42 | Cellular PCM/graphite composites with improved thermal and electrical response. Materials Letters, 2013, 92, 100-103.                                               | 1.3 | 16        |
| 43 | Grain boundary conductivity of heterogeneous ceria gadolinia. Electrochimica Acta, 2012, 85, 116-121.                                                               | 2.6 | 12        |
| 44 | New oxide-ion conductor Ho2(Ti1.904Ho0.096)O6.952: structure and conductivity. Journal of Crystal<br>Growth, 2011, 318, 966-970.                                    | 0.7 | 7         |
| 45 | Numerical solutions for mixed controlled solidification of phase change materials. International<br>Journal of Heat and Mass Transfer, 2010, 53, 5335-5342.         | 2.5 | 12        |
| 46 | Correlation between impedance spectra of bulk ceramics and films with in-plane configuration.<br>Journal of the European Ceramic Society, 2010, 30, 221-225.        | 2.8 | 2         |
| 47 | De-convolution of bulk and interfacial contributions based on impedance spectroscopy with external load resistance. Materials Research Bulletin, 2009, 44, 884-888. | 2.7 | 6         |
| 48 | Effects of composition and frozen-in conditions on bulk and grain boundary conductivities of Yb2Ti2O7-based materials. Solid State Ionics, 2009, 180, 774-777.      | 1.3 | 7         |
| 49 | Impedance analysis of Sr-substituted CePO4 with mixed protonic and p-type electronic conduction.<br>Ceramics International, 2009, 35, 1481-1486.                    | 2.3 | 11        |
| 50 | Interpretation of impedance spectra based on local minima of imaginary Z vs frequency.<br>Electrochimica Acta, 2008, 53, 8222-8227.                                 | 2.6 | 1         |
| 51 | Effects of Yb:Ti ratio on transport properties of Yb2±xTi2±xO7±δ. Solid State Ionics, 2008, 179, 1046-1049.                                                         | 1.3 | 5         |
| 52 | Reducibility of Ce1â^'xGdxO2â^´Î´ in prospective working conditions. Journal of Power Sources, 2007, 173, 291-297.                                                  | 4.0 | 33        |
| 53 | Effects of Fe-additions on sintering and transport properties of Yb2Ti2â^'yFeyO7â^'δ. Journal of the<br>European Ceramic Society, 2007, 27, 4283-4286.              | 2.8 | 6         |
| 54 | Order–disorder phase transitions and high-temperature oxide ion conductivity of Er2+xTi2â^xO7â^îl´<br>(x=0, 0.096). Materials Research Bulletin, 2007, 42, 742-752. | 2.7 | 19        |

| #  | Article                                                                                                                                                                                                               | IF          | CITATIONS             |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------|
| 55 | Microstructure and Electrical Conductivity of<br>Yb <sub>2+x</sub> Ti <sub>2-x</sub> O <sub>7-x/2</sub> Materials.<br>Materials Science Forum, 2006, 514-516, 417-421.                                                | 0.3         | 5                     |
| 56 | Ionic and electronic conductivity of Yb2+xTi2â^xO7â^x/2 materials. Solid State Ionics, 2006, 177, 1785-1788.                                                                                                          | 1.3         | 49                    |
| 57 | Synthesis and electrical transport properties of Lu2+xTi2â^'xO7â^'x/2 oxide-ion conductors. Solid State<br>Ionics, 2006, 177, 1149-1155.                                                                              | 1.3         | 40                    |
| 58 | New Oxide-Ion Conductors<br>Ln <sub>2+x</sub> Ti <sub>2-x</sub> O <sub>7-x/2</sub> (Ln = Dy – Lu;) Tj ETQ                                                                                                             | iq000B0 rgB | T <b>10</b> verlock 1 |
| 59 | Electrical Characterization of Mullite Bodies Containing Al-Rich Anodizing Sludge. Materials Science Forum, 2006, 514-516, 1726-1730.                                                                                 | 0.3         | 2                     |
| 60 | Synthesis and conductivity of Yb2Ti2O7 nanoceramics. Solid State Ionics, 2005, 176, 1653-1656.                                                                                                                        | 1.3         | 33                    |
| 61 | Effects of firing conditions and addition of Co on bulk and grain boundary properties of CGO. Solid State Ionics, 2005, 176, 2799-2805.                                                                               | 1.3         | 59                    |
| 62 | Kinetics of phase transformations for constant heating rate occurring close to the thermodynamic transition. Thermochimica Acta, 2005, 435, 85-91.                                                                    | 1.2         | 5                     |
| 63 | Stability and transport properties of La2Mo2O9. Journal of Solid State Electrochemistry, 2004, 8, 638.                                                                                                                | 1.2         | 28                    |
| 64 | Effects of sintering additives on the mixed transport properties of ceria-based materials under reducing conditions. Journal of Solid State Electrochemistry, 2004, 8, 644.                                           | 1.2         | 16                    |
| 65 | Predicting processing-sintering-related properties of mullite–alumina ceramic bodies based on Al-rich<br>anodising sludge by impedance spectroscopy. Journal of the European Ceramic Society, 2004, 24,<br>3841-3848. | 2.8         | 26                    |
| 66 | Synthesis and characterization of La2Mo2O9 obtained from freeze-dried precursors. Journal of Solid State Chemistry, 2004, 177, 2378-2386.                                                                             | 1.4         | 54                    |
| 67 | On the use of multichannel data acquisition of impedance spectra. lonics, 2003, 9, 370-374.                                                                                                                           | 1.2         | 7                     |
| 68 | The effect of cobalt oxide sintering aid on electronic transport in Ce0.80Gd0.20O2â^î^ electrolyte.<br>Electrochimica Acta, 2003, 48, 1023-1029.                                                                      | 2.6         | 112                   |
| 69 | Conductivity of CGO and CSO ceramics obtained from freeze-dried precursors. Electrochimica Acta, 2003, 48, 1551-1557.                                                                                                 | 2.6         | 70                    |
| 70 | Electronic transport in Ce0.8Sm0.2O1.9â^'δ ceramics under reducing conditions. Electrochimica Acta,<br>2003, 48, 2761-2766.                                                                                           | 2.6         | 49                    |
| 71 | Behavior of strontium titanate ceramics in reducing conditions suggesting enhanced conductivity along grain contacts. Journal of the European Ceramic Society, 2002, 22, 1683-1691.                                   | 2.8         | 15                    |
| 72 | Microstructural effects on the electrical behaviour of SrTi0.95Nb0.05O3+Î′ materials on changing from reducing to oxidising conditions. Sensors and Actuators B: Chemical, 2001, 75, 88-94.                           | 4.0         | 12                    |

JOãO CC ABRANTES

| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Applicability of the brick layer model to describe the grain boundary properties of strontium titanate ceramics. Journal of the European Ceramic Society, 2000, 20, 1603-1609. | 2.8 | 89        |
| 74 | Oxygen stoichiometry of Sr0.97(Ti,Fe)O3â^î́r materials. Solid State Ionics, 2000, 135, 761-764.                                                                                | 1.3 | 19        |
| 75 | An alternative representation of impedance spectra of ceramics. Materials Research Bulletin, 2000, 35, 727-740.                                                                | 2.7 | 106       |
| 76 | Representations of impedance spectra of ceramics. Materials Research Bulletin, 2000, 35, 965-976.                                                                              | 2.7 | 19        |
| 77 | Representations of impedance spectra of ceramics. Materials Research Bulletin, 2000, 35, 955-964.                                                                              | 2.7 | 37        |
| 78 | Evaluation of SrTi1âÂ^Â'yNbyO3+δ materials for gas sensors. Sensors and Actuators B: Chemical, 1999, 56,<br>198-205.                                                           | 4.0 | 27        |
| 79 | Oxygen losses and electrical conductivity of SrTi1â^'yNbyO3+δ materials. Journal of the European<br>Ceramic Society, 1999, 19, 773-776.                                        | 2.8 | 10        |
| 80 | Onset of resistive internal interfaces in SrTi0.95Nb0.05O3+Î′ materials on changing from reducing to oxidising conditions and on cooling. Ionics, 1999, 5, 410-414.            | 1.2 | 0         |
| 81 | Combined effects of A-site deficiency and dopant content on the transport properties of Nb-doped strontium titanate. Ionics, 1997, 3, 16-22.                                   | 1.2 | 8         |
| 82 | Electrical conductivity of Sr1â^'xTiO3â^'î´ materialsmaterials. Ionics, 1997, 3, 436-441.                                                                                      | 1.2 | 4         |
| 83 | Evaluation of ionic transport number of CeO2 doped Y-TZP and PSZ ceramics with alumina additions.<br>Solid State Ionics, 1992, 50, 167-173.                                    | 1.3 | 6         |