Yoshihide Mawatari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9381439/publications.pdf

Version: 2024-02-01

516215 610482 50 658 16 citations g-index h-index papers

50 50 50 350 docs citations times ranked citing authors all docs

24

#	Article	IF	CITATIONS
1	Prediction of minimum fluidization velocity for vibrated fluidized bed. Powder Technology, 2003, 131, 66-70.	2.1	68
2	Effect of particle diameter on fluidization under vibration. Powder Technology, 2002, 123, 69-74.	2.1	59
3	Numerical simulation of particle motion in vibrated fluidized bed. Chemical Engineering Science, 2004, 59, 437-447.	1.9	42
4	Numerical simulation of cohesive particle motion in vibrated fluidized bed. Chemical Engineering Science, 2005, 60, 5010-5021.	1.9	39
5	Prediction of Agglomerate Size for Fine Particles in a Vibro-fluidized Bed Journal of Chemical Engineering of Japan, 2003, 36, 277-283.	0.3	28
6	Comparison of three vibrational modes (twist, vertical and horizontal) for fluidization of fine particles. Advanced Powder Technology, 2001, 12, 157-168.	2.0	27
7	Favorable vibrated fluidization conditions for cohesive fine particles. Powder Technology, 2005, 154, 54-60.	2.1	27
8	Drying characteristics of porous material immersed in a bed of glass beads fluidized by superheated steam under reduced pressure. Chemical Engineering Science, 2007, 62, 471-480.	1.9	27
9	Behavior of magnetic Fe3O4 nano-particles in magnetically assisted gas-fluidized beds. Advanced Powder Technology, 2011, 22, 427-432.	2.0	24
10	Model of estimating nano-particle agglomerate sizes in a vibro-fluidized bed. Advanced Powder Technology, 2013, 24, 311-316.	2.0	23
11	Drying Characteristics of Porous Materials in a Fluidized Bed under Reduced Pressure. Drying Technology, 2005, 23, 1257-1272.	1.7	22
12	Flow Pattern Transition of Fine Cohesive Powders in a Gas-Solid Fluidized Bed under Mechanical Vibrating Conditions. Procedia Engineering, 2015, 102, 945-951.	1.2	22
13	Multiple crack nucleation in drying nanoparticle-polymer coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 342, 65-69.	2.3	18
14	Measuring the Drying Rate of Liquid Film Coatings Using Heat Flux Method. Drying Technology, 2009, 27, 817-820.	1.7	17
15	Drying Characteristics of Porous Material in a Fluidized Bed of Fluidizing Particles with Superheated Steam. Journal of Chemical Engineering of Japan, 2003, 36, 655-662.	0.3	17
16	The Mechanism of a Temperature Decrement of Porous Materials Immersed in a Fluidized Bed in Drying. Journal of Chemical Engineering of Japan, 2004, 37, 875-881.	0.3	17
17	Dryingâ€induced surface roughening of polymeric coating under periodic air blowing. AICHE Journal, 2009, 55, 1648-1658.	1.8	16
18	Bubbling Characteristics under Vertical Vibration in a Two-Dimensional Fluidized Bed. Journal of Chemical Engineering of Japan, 2005, 38, 18-23.	0.3	15

#	Article	IF	CITATIONS
19	A model for estimating agglomerate sizes of non-magnetic nanoparticles in magnetic fluidized beds. Korean Journal of Chemical Engineering, 2013, 30, 501-507.	1.2	14
20	Characteristics of vibro-fluidization for fine powder under reduced pressure. Advanced Powder Technology, 2003, 14, 559-570.	2.0	13
21	Drying Characteristics of Porous Materials in Superheated Steam Fluidized Bed under Reduced Pressure. Journal of Chemical Engineering of Japan, 2005, 38, 983-989.	0.3	13
22	Effect of Motion of Drying Materials in Fluidized Bed on Drying Characteristics Journal of Chemical Engineering of Japan, 2002, 35, 753-758.	0.3	13
23	Minimum Bubbling Velocity and Homogeneous Fluidization Region under Reduced Pressure for Group-A Powders. Journal of Chemical Engineering of Japan, 2004, 37, 89-94.	0.3	12
24	Characteristics of non-magnetic nanoparticles in magnetically fluidized bed by adding coarse magnets. Journal of Central South University, 2011, 18, 1383-1388.	1.2	10
25	Particle-assisted dynamic wetting in a suspension liquid jet impinged onto a moving solid at different flow rates. Chemical Engineering Science, 2006, 61, 5421-5426.	1.9	9
26	Separation of Solid Particles by Density Difference in a Liquid-Solid Fluidized Bed. Journal of Chemical Engineering of Japan, 2005, 38, 264-270.	0.3	8
27	Suppressed Cracking in Drying Nanoparticle-Polymer Coatings at High Peclet Numbers. Journal of Chemical Engineering of Japan, 2010, 43, 209-213.	0.3	7
28	Enhanced Solvent Drying of Liquid Film Coatings by Fluorine-Base Polymeric Surfactant Addition. Journal of Chemical Engineering of Japan, 2012, 45, 441-443.	0.3	7
29	Conversion air velocity at which reverse density segregation converts to normal density segregation in a vibrated fluidized bed of binary particulate mixtures. Advanced Powder Technology, 2022, 33, 103583.	2.0	7
30	Drying Characteristics of Porous Materials in a Fluidized Bed of Hygroscopic Porous Particles. Journal of Chemical Engineering of Japan, 2005, 38, 976-982.	0.3	6
31	Effect of Vibration on Particle Motion in Two Dimensional Fluidized Bed Kagaku Kogaku Ronbunshu, 2001, 27, 824-826.	0.1	5
32	Nonuniform Thinning of Polymeric Coatings under Marangoni Stress. Journal of Chemical Engineering of Japan, 2010, 43, 40-45.	0.3	3
33	Effects of polymer end groups on the drying rates of phase separating coatings. Chemical Engineering and Processing: Process Intensification, 2013, 68, 55-59.	1.8	3
34	Drying-Induced Hierarchical Dimple Patterns on Partially Miscible Polymeric Films Under Ordered Convections. Drying Technology, 2013, 31, 1212-1218.	1.7	3
35	Light-Tunable Solvent Drying in Photo-Responsive Solution Coatings. Drying Technology, 2007, 26, 97-100.	1.7	2
36	Transition between Condensing and Air Flow Drying of Thin-Film Coatings. Drying Technology, 2007, 25, 993-997.	1.7	2

#	Article	IF	CITATIONS
37	Drying behavior of thin liquid films in a condenser dryer with a solvent-trapping screen. Chemical Engineering and Processing: Process Intensification, 2009, 48, 1427-1431.	1.8	2
38	Drying-Rate Limit in Condenser Drying of Thin Film Coatings. Journal of Chemical Engineering of Japan, 2006, 39, 814-817.	0.3	2
39	Numerical Modeling of Drying Thin Film Coating with a Surface-Wiping Process. Kagaku Kogaku Ronbunshu, 2009, 35, 436-441.	0.1	2
40	Stress Oscillations in Co-Solvent Nanoparticle–Polymer Suspensions Subjected to Constant Shear Rate. Journal of Chemical Engineering of Japan, 2013, 46, 430-433.	0.3	2
41	Drying-induced reduction in electrical resistivity of carbon black-polyamideimide nanocomposite films. Chemical Engineering and Processing: Process Intensification, 2013, 70, 17-20.	1.8	1
42	Agglomerating fluidization of nanoparticles in the vibration or magnetic field. , 2013, , .		1
43	Convective flow speed of particles in a vibrated powder bed. Journal of Physics Communications, 2020, 4, 075012.	0.5	1
44	Motion of Splash Particles Released by Bubble Rupture in Fluidized Bed Kagaku Kogaku Ronbunshu, 2002, 28, 43-48.	0.1	1
45	Composition-Dependent Stress Oscillations in a Dilute Suspension under Shear. Journal of Chemical Engineering of Japan, 2016, 49, 6-9.	0.3	1
46	Cracking in Drying Silica-Polymer Films: Morphology Transitions. AIP Conference Proceedings, 2008, , .	0.3	0
47	Kyushu Institute of Technology, Department of Applied Chemistry, Chemical Process Engineering Laboratory. Seikei-Kakou, 2011, 23, 351-354.	0.0	O
48	Wetting-Induced Entrapment of a Droplet in a UV-Curable Volatile Liquid Coating. Journal of Chemical Engineering of Japan, 2013, 46, 367-370.	0.3	0
49	Convective Particle Motion for Fine Particle Bed under Mechanical Bed Vibration. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2016, 24, 103-108.	0.0	0
50	Flow Pattern Transition in a Gas-solid Fluidized Bed for Fine Powder under Mechanical Bed Vibration. Journal of the Society of Powder Technology, Japan, 2017, 54, 732-737.	0.0	0