Luiz Carlos Alves Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9381422/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Theoretical and Xâ€ray Evidence of Electrostatic Phosphonium anti and gauche Effects. ChemPhysChem, 2022, , e202100856.	1.0	0
2	Purification of arsenic-contaminated water using iron molybdate filters and monitoring of their genotoxic, mutagenic, and cytotoxic effects through bioassays. Environmental Science and Pollution Research, 2021, 28, 5714-5730.	2.7	2
3	A Sociodemographic Profile of Mask Use During the COVID-19 Outbreak Among Young and Elderly Individuals in Brazil: Online Survey Study. JMIR Aging, 2021, 4, e28989.	1.4	Ο
4	Removal of mercury(II) from contaminated water by gold-functionalised Fe ₃ O ₄ magnetic nanoparticles. Environmental Technology (United Kingdom), 2020, 41, 959-970.	1.2	16
5	New Approach to Dehydration of Xylose to 2-Furfuraldehyde Using a Mesoporous Niobium-Based Catalyst. ACS Omega, 2020, 5, 21392-21400.	1.6	9
6	Selective oxidation of aniline into azoxybenzene catalyzed by Nb-peroxo@iron oxides at room temperature. New Journal of Chemistry, 2020, 44, 8710-8717.	1.4	9
7	Nanoparticles of niobium oxyhydroxide incorporated in different polymers for photocatalytic degradation of dye. Journal of Polymer Research, 2019, 26, 1.	1.2	9
8	Multifunctional Nb–Cu nanostructured materials as potential adsorbents and oxidation catalysts for real wastewater decontamination. New Journal of Chemistry, 2019, 43, 9134-9144.	1.4	5
9	Simple synthesis and characterization of I-Cystine functionalized δ-FeOOH for highly efficient Hg(II) removal from contamined water and mining waste. Chemosphere, 2019, 215, 422-431.	4.2	57
10	Magnetic photocatalysts from industrial residues and TiO2 for the degradation of organic contaminants. Journal of Environmental Chemical Engineering, 2019, 7, 102826.	3.3	14
11	Purification of arsenic-contaminated water with K-jarosite filters. Environmental Science and Pollution Research, 2018, 25, 13857-13867.	2.7	7
12	Development of Fe/Nb-based solar photocatalysts for water treatment: impact of different synthesis routes on materials properties. Environmental Science and Pollution Research, 2018, 25, 27737-27747.	2.7	3
13	Bioengineered carboxymethyl cellulose-doxorubicin prodrug hydrogels for topical chemotherapy of melanoma skin cancer. Carbohydrate Polymers, 2018, 195, 401-412.	5.1	51
14	Simultaneous deoxygenation, cracking and isomerization of palm kernel oil and palm olein over beta zeolite to produce biogasoline, green diesel and biojet-fuel. Fuel, 2018, 223, 149-156.	3.4	101
15	Peroxoniobium inhibits leukemia cell growth. RSC Advances, 2018, 8, 10310-10313.	1.7	10
16	Use of poly(3â€hydroxybutyrate)/niobium oxyhydroxide nanocomposites in photocatalysis: Effect of preparation methods. Journal of Applied Polymer Science, 2018, 135, 5836.	1.3	2
17	Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. International Journal of Biological Macromolecules, 2018, 106, 1218-1234.	3.6	292
18	Adsorption of diclofenac on a magnetic adsorbent based on maghemite: experimental and theoretical studies. New Journal of Chemistry, 2018, 42, 437-449.	1.4	63

#	Article	lF	CITATIONS
19	Eco-friendly and biocompatible cross-linked carboxymethylcellulose hydrogels as adsorbents for the removal of organic dye pollutants for environmental applications. Environmental Technology (United Kingdom), 2018, 39, 2856-2872.	1.2	48
20	Electrocatalytic performance of different cobalt molybdate structures for water oxidation in alkaline media. CrystEngComm, 2018, 20, 5592-5601.	1.3	27
21	Mesoporous Niobium Oxyhydroxide Catalysts for Cyclohexene Epoxidation Reactions. Applied Sciences (Switzerland), 2018, 8, 881.	1.3	7
22	High Water Oxidation Performance of Wâ€Đoped BiVO ₄ Photoanodes Coupled to V ₂ O ₅ Rods as a Photoabsorber and Hole Carrier. Solar Rrl, 2018, 2, 1800089.	3.1	22
23	Synthesis of glycerol carbonate over a 2D coordination polymer built with Nd ³⁺ ions and organic ligands. Dalton Transactions, 2018, 47, 10976-10988.	1.6	3
24	Magnetic iron species highly dispersed over silica: use as catalysts for removal of pollutants in water. Environmental Science and Pollution Research, 2017, 24, 6114-6125.	2.7	10
25	Thermodynamic Study of Methylene Blue Adsorption on Carbon Nanotubes Using Isothermal Titration Calorimetry: A Simple and Rigorous Approach. Journal of Chemical & Engineering Data, 2017, 62, 729-737.	1.0	35
26	Carboxymethylcellulose/ZnCdS fluorescent quantum dot nanoconjugates for cancer cell bioimaging. International Journal of Biological Macromolecules, 2017, 96, 675-686.	3.6	70
27	A hybrid catalyst for decontamination of organic pollutants based on a bifunctional dicopper(II) complex anchored over niobium oxyhydroxide. Applied Catalysis B: Environmental, 2017, 209, 339-345.	10.8	8
28	Control of properties of nanocomposites bio-based collagen and cellulose nanocrystals. Cellulose, 2017, 24, 1731-1744.	2.4	13
29	PET-modified red mud as catalysts for oxidative desulfurization reactions. Journal of Environmental Sciences, 2017, 57, 312-320.	3.2	14
30	Nanostructured niobium oxide synthetized by a new route using hydrothermal treatment: High efficiency in oxidation reactions. Applied Catalysis B: Environmental, 2017, 205, 481-488.	10.8	48
31	Eleonorite, Fe ₆ ³⁺ (PO ₄) ₄ O(OH) ₄ ·6H ₂ O: validation as a mineral species and new data. Mineralogical Magazine, 2017, 81, 61-76.	0.6	11
32	Thermodinamic study of a magnetic molecular imprinted polymer for removal of nitrogenous pollutant from gasoline. Fuel, 2017, 210, 380-389.	3.4	28
33	Marigold (Tagetes erecta): The Potential Value in the Phytoremediation of Chromium. Pedosphere, 2017, 27, 559-568.	2.1	35
34	Improved photocatalytic activity of δ-FeOOH by using H2O2 as an electron acceptor. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332, 54-59.	2.0	35
35	Nb and V-modified silicate for conversion of glycerol: Comparison between the waste and commercial product. Catalysis Today, 2017, 289, 258-263.	2.2	15
36	Converting Fe-rich magnetic wastes into active photocatalysts for environmental remediation processes. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 335, 259-267.	2.0	7

#	Article	IF	CITATIONS
37	Improved selfâ€healing properties of collagen using polyurethane microcapsules containing reactive diisocyanate. Polymer International, 2016, 65, 721-727.	1.6	7
38	Composites based on PET and red mud residues as catalyst for organic removal from water. Journal of Hazardous Materials, 2016, 314, 304-311.	6.5	52
39	Heteropoly acid catalysts for the synthesis of fragrance compounds from bio-renewables: acetylation of nopol and terpenic alcohols. RSC Advances, 2016, 6, 43217-43222.	1.7	12
40	Recycled collagen films as biomaterials for controlled drug delivery. New Journal of Chemistry, 2016, 40, 8502-8510.	1.4	18
41	Immobilization of soybean peroxidase on silica-coated magnetic particles: a magnetically recoverable biocatalyst for pollutant removal. RSC Advances, 2016, 6, 83856-83863.	1.7	33
42	Adsorption of arsenic from water and its recovery as a highly active photocatalyst. Environmental Science and Pollution Research, 2016, 23, 21969-21979.	2.7	13
43	A hole inversion layer at the BiVO4/Bi4V2O11 interface produces a high tunable photovoltage for water splitting. Scientific Reports, 2016, 6, 31406.	1.6	54
44	Enhanced catalytic activity for fructose conversion on nanostructured niobium oxide after hydrothermal treatment: Effect of morphology and porous structure. Journal of Molecular Catalysis A, 2016, 422, 23-34.	4.8	17
45	Oxidative dehydration reaction of glycerol into acrylic acid: A first-principles prediction of structural and thermodynamic parameters of a bifunctional catalyst. Chemical Physics Letters, 2016, 651, 161-167.	1.2	16
46	Nanostructured niobium oxyhydroxide dispersed Poly (3-hydroxybutyrate) (PHB) films: Highly efficient photocatalysts for degradation methylene blue dye. Applied Catalysis B: Environmental, 2016, 189, 141-150.	10.8	46
47	Nanostructured oxyhydroxide niobium (NbO ₂ OH) as UV radiation protector for polypropylene. RSC Advances, 2016, 6, 5040-5048.	1.7	5
48	Hybrid heterostructures based on hematite and highly hydrophilic carbon dots with photocatalytic activity. Applied Catalysis B: Environmental, 2016, 182, 204-212.	10.8	47
49	Photoelectrochemical water oxidation over fibrous and sponge-like BiVO4/β-Bi4V2O11 photoanodes fabricated by spray pyrolysis. Applied Catalysis B: Environmental, 2016, 182, 247-256.	10.8	49
50	ResÃduo de Curtumes como Fonte de Nitrogênio para Trigo e Arroz em Sucessão. Revista Brasileira De Ciencia Do Solo, 2015, 39, 1445-1455.	0.5	2
51	Almeidaite, Pb(Mn,Y)Zn ₂ (Ti,Fe ³⁺) ₁₈ O ₃₆ (O,OH) ₂ , a new crichtonite-group mineral, from Novo Horizonte, Bahia, Brazil. Mineralogical Magazine, 2015, 79, 269-283.	0.6	14
52	Nanostructured vanadium-doped iron oxide: catalytic oxidation of methylene blue dye. New Journal of Chemistry, 2015, 39, 3051-3058.	1.4	40
53	Green acid catalyst obtained from industrial wastes for glycerol etherification. Fuel Processing Technology, 2015, 138, 695-703.	3.7	27
54	Peroxo-niobium oxyhydroxide sensitized TiO ₂ crystals. RSC Advances, 2015, 5, 44567-44570.	1.7	9

#	Article	IF	CITATIONS
55	Generating active and non-selective oxidizing species by previous treatment of niobium-doped mesoporous silica with hydrogen peroxide. New Journal of Chemistry, 2015, 39, 5316-5321.	1.4	6
56	Amphiphilic property of niobium oxyhydroxide for waste glycerol conversion to produce solketal. Catalysis Today, 2015, 254, 83-89.	2.2	38
57	A fast and environment-friendly method for determination of chemical oxygen demand by using the heterogeneous Fenton-like process (H2O2/Fe3â^'xCoxO4 nanoparticles) as an oxidant. Talanta, 2015, 135, 75-80.	2.9	19
58	Synergism between n-type WO3 and p-type δ-FeOOH semiconductors: High interfacial contacts and enhanced photocatalysis. Applied Catalysis B: Environmental, 2015, 165, 579-588.	10.8	54
59	Nb-doped hematite: Highly active catalyst for the oxidation of organic dyes in water. Catalysis Today, 2015, 240, 176-181.	2.2	34
60	Use of Ethylenediaminetetraacetic Acid as a Scavenger for Chromium from "Wet Blue―Leather Waste: Thermodynamic and Kinetics Parameters. Journal of Chemistry, 2014, 2014, 1-8.	0.9	11
61	A photocatalytic process for the eradication of dengue through ˙OH generation in the presence of sunlight and iron oxide. RSC Advances, 2014, 4, 63650-63654.	1.7	2
62	Correianevesite, Fe2+Mn22+(PO4)2{middle dot}3H2O, a new reddingite-group mineral from the Cigana mine, Conselheiro Pena, Minas Gerais, Brazil. American Mineralogist, 2014, 99, 811-816.	0.9	8
63	Effect of iron precursor on the Fenton-like activity of Fe2O3/mesoporous silica catalysts prepared under mild conditions. Applied Catalysis B: Environmental, 2014, 144, 792-799.	10.8	76
64	Modified Niobium Oxyhydroxide Catalyst: An Acetalization Reaction to Produce Bioâ€additives for Sustainable Use of Waste Glycerol. ChemCatChem, 2014, 6, 2961-2969.	1.8	29
65	Amphiphilic niobium oxyhydroxide as a hybrid catalyst for sulfur removal from fuel in a biphasic system. Applied Catalysis B: Environmental, 2014, 147, 43-48.	10.8	28
66	Micro Mesoporous Activated Carbon from Coffee Husk as Biomass Waste for Environmental Applications. Waste and Biomass Valorization, 2013, 4, 395-400.	1.8	26
67	A novel floating photocatalyst device based on cloth canvas impregnated with iron oxide. New Journal of Chemistry, 2013, 37, 2486.	1.4	14
68	Enhanced photocatalytic hydrogen generation from water by Ni(OH)2 loaded on Ni-doped δ-FeOOH nanoparticles obtained by one-step synthesis. RSC Advances, 2013, 3, 20308.	1.7	24
69	Synergistic co-processing of Red Mud waste from the Bayer process and a crude untreated waste stream from bio-diesel production. Green Chemistry, 2013, 15, 496.	4.6	32
70	A novel hydrofobic niobium oxyhydroxide as catalyst: Selective cyclohexene oxidation to epoxide. Applied Catalysis A: General, 2013, 454, 88-92.	2.2	41
71	Catalytic carbon deposition-oxidation over Ni, Fe and Co catalysts: A new indirect route to store and transport gas hydrocarbon fuels. Catalysis Communications, 2013, 32, 58-61.	1.6	7
72	Production of compounds to be used as fuel additive: Glycerol conversion using Nb-doped MgAl mixed oxide. Catalysis Today, 2013, 213, 65-72.	2.2	10

#	Article	IF	CITATIONS
73	Activated carbon prepared from coffee pulp: potential adsorbent of organic contaminants in aqueous solution. Water Science and Technology, 2013, 68, 1085-1090.	1.2	22
74	Óxidos de ferro e suas aplicações em processos catalÃŧicos: uma revisão. Quimica Nova, 2013, 36, 123-130.	0.3	49
75	An unusually thermally stable magnetite from a niobium mine in Brazil. Clay Minerals, 2012, 47, 69-79.	0.2	1
76	Iron oxide catalysts: Fenton and Fentonlike reactions – a review. Clay Minerals, 2012, 47, 285-302.	0.2	317
77	Synthesis and characterization of iron/niobium composites: Catalyst for dye wastewater treatments. Catalysis Communications, 2012, 26, 209-213.	1.6	21
78	Magnetic composites based on metallic nickel and molybdenum carbide: A potential material for pollutants removal. Journal of Hazardous Materials, 2012, 241-242, 73-81.	6.5	21
79	Effect of tungsten doping on catalytic properties of niobium oxide. Journal of the Brazilian Chemical Society, 2012, , .	0.6	6
80	Iron: a versatile element to produce materials for environmental applications. Journal of the Brazilian Chemical Society, 2012, 23, 1579-1593.	0.6	43
81	SÃntese de acetato de celulose a partir da palha de feijão utilizando N-bromossuccinimida (NBS) como catalisador. Polimeros, 2012, 22, 447-452.	0.2	11
82	Potential of wet blue leather waste for ruminant feeding. Revista Brasileira De Zootecnia, 2012, 41, 1070-1073.	0.3	3
83	Amphiphilic catalysts based on onion-like carbon over magnetic iron oxide for petrochemical industry use. Fuel, 2012, 96, 604-607.	3.4	15
84	Hybrid layer-by-layer assembly based on animal and vegetable structural materials: multilayered films of collagen and cellulose nanowhiskers. Soft Matter, 2011, 7, 4405.	1.2	52
85	Catalysts based on clay and iron oxide for oxidation of toluene. Applied Clay Science, 2011, 51, 385-389.	2.6	73
86	Processo de transferência de tecnologia da universidade para a indústria: estudo de caso envolvendo a conversão de glicerol. Quimica Nova, 2011, 34, 1852-1855.	0.3	0
87	Removal of Cadmium Ions from Water by Synthetic Niobia. Adsorption Science and Technology, 2011, 29, 789-797.	1.5	0
88	Removal of organic dyes using Cr-containing activated carbon prepared from leather waste. Journal of Hazardous Materials, 2011, 192, 1094-1099.	6.5	47
89	Heterogeneous catalyst based on peroxo-niobium complexes immobilized over iron oxide for organic oxidation in water. Applied Catalysis B: Environmental, 2011, 107, 237-244.	10.8	59
90	Photocatalytic Degradation of Organic Compound in Water using Synthetic Niobia: Experimental and Theoretical Studies. Topics in Catalysis, 2011, 54, 270-276.	1.3	17

LUIZ CARLOS ALVES OLIVEIRA

#	Article	IF	CITATIONS
91	Recycling of solid waste rich in organic nitrogen from leather industry: Mineral nutrition of rice plants. Journal of Hazardous Materials, 2011, 186, 1064-1069.	6.5	46
92	Preparation of CuO/SiO2 and photocatalytic activity by degradation of methylene blue. Environmental Chemistry Letters, 2010, 8, 63-67.	8.3	83
93	Niobian iron oxides as heterogeneous Fenton catalysts for environmental remediation. Hyperfine Interactions, 2010, 195, 27-34.	0.2	9
94	Use of activated carbon as a reactive support to produce highly active-regenerable Fe-based reduction system for environmental remediation. Chemosphere, 2010, 81, 7-12.	4.2	55
95	Incorporation of mineral phosphorus and potassium on leather waste (collagen): A new NcollagenPK-fertilizer with slow liberation. Journal of Hazardous Materials, 2010, 176, 374-380.	6.5	39
96	Effect of Ni incorporation into goethite in the catalytic activity for the oxidation of nitrogen compounds in petroleum. Applied Catalysis A: General, 2010, 381, 36-41.	2.2	25
97	Avaliação e remoção de cobre em aguardentes de cana pela utilização dos aluminossilicatos: zeólita e bentonita. Ciencia E Agrotecnologia, 2010, 34, 1109-1115.	1.5	9
98	Utilization of Sn/Nb2O5 composite for the removal of methylene blue. Quimica Nova, 2010, 33, 528-531.	0.3	20
99	Understanding the Molecular Behavior of Organotin Compounds to Design their Effective Use as Agrochemicals: Exploration via Quantum Chemistry and Experiments. Journal of Biomolecular Structure and Dynamics, 2010, 28, 227-238.	2.0	41
100	Chromium poisoning in rats feeding on tannery residues. Animal Production Science, 2010, 50, 293.	0.6	1
101	Modified Niobia As a New Catalyst for Selective Production of Dimethoxymethane from Methanol. Energy & Fuels, 2010, 24, 4793-4796.	2.5	24
102	Remoção de compostos orgânicos em água empregando carvão ativado impregnado com óxido de ferro: ação combinada de adsorção e oxidação em presença de H2O2. Quimica Nova, 2009, 32, 1561-1	565 ³ .	12
103	Acid-catalyzed oligomerization of glycerol investigated by electrospray ionization mass spectrometry. Journal of the Brazilian Chemical Society, 2009, 20, 1667-1673.	0.6	37
104	SÃntese e caracterização de nanopartÃculas de óxido de ferro suportadas em matriz carbonácea: remoção do corante orgânico azul de metileno em água. Quimica Nova, 2009, 32, 1723-1726.	0.3	8
105	Nióbia sintética modificada como catalisador na oxidação de corante orgânico: utilização de H2O2 e O2 atmosférico como oxidantes. Quimica Nova, 2009, 32, 1373-1377.	0.3	11
106	Effect of Hydrogen Treatment on the Catalytic Activity of Iron Oxide Based Materials Dispersed Over Activated Carbon: Investigations Toward Hydrogen Peroxide Decomposition. Catalysis Letters, 2009, 133, 41-48.	1.4	36
107	Brazilian cachaça: "Single shot―typification of fresh alembic and industrial samples via electrospray ionization mass spectrometry fingerprinting. Food Chemistry, 2009, 115, 1064-1068.	4.2	32
108	Activated carbon/iron oxide composites for the removal of atrazine from aqueous medium. Journal of Hazardous Materials, 2009, 164, 609-614.	6.5	168

#	Article	IF	CITATIONS
109	Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents. Journal of Hazardous Materials, 2009, 165, 87-94.	6.5	231
110	Catalytic oxidation of sulfur and nitrogen compounds from diesel fuel. Applied Catalysis A: General, 2009, 360, 205-209.	2.2	74
111	Iron oxide dispersed over activated carbon: Support influence on the oxidation of the model molecule methylene blue. Applied Catalysis A: General, 2009, 367, 53-58.	2.2	108
112	Nb-doped hematites for decomposition of isopropanol: Evidence of surface reactivity by in situ CO adsorption. Applied Catalysis A: General, 2009, 368, 17-21.	2.2	26
113	Synthesis and thermal treatment of cu-doped goethite: Oxidation of quinoline through heterogeneous fenton process. Applied Catalysis B: Environmental, 2009, 91, 581-586.	10.8	92
114	Nb-containing hematites Fe2â^'xNbxO3: The role of Nb5+ on the reactivity in presence of the H2O2 or ultraviolet light. Applied Catalysis A: General, 2009, 357, 79-84.	2.2	66
115	The molecular basis for the behaviour of niobia species in oxidation reaction probed by theoretical calculations and experimental techniques. Molecular Physics, 2009, 107, 171-179.	0.8	20
116	Brazilian Limonite for the Oxidation of Quinoline: High Activity after a Simple Magnetic Separation. Energy & Fuels, 2009, 23, 4426-4430.	2.5	12
117	Reactive adsorption of methylene blue on montmorillonite via an ESI-MS study. Applied Clay Science, 2009, 43, 190-195.	2.6	52
118	Adsorção e dessorção aniônicas individuais por gibbsita pedogenética. Quimica Nova, 2009, 32, 99-105.	0.3	15
119	Catalytic behavior of niobia species on oxidation reactions: insights from experimental and theoretical models. Journal of Materials Science, 2008, 43, 5982-5988.	1.7	8
120	Removal of As(V) and Cr(VI) from aqueous solutions using solid waste from leather industry. Journal of Hazardous Materials, 2008, 151, 280-284.	6.5	110
121	Modified goethites as catalyst for oxidation of quinoline: Evidence of heterogeneous Fenton process. Applied Catalysis A: General, 2008, 347, 89-93.	2.2	59
122	Catalytic properties of goethite prepared in the presence of Nb on oxidation reactions in water: Computational and experimental studies. Applied Catalysis B: Environmental, 2008, 83, 169-176.	10.8	84
123	Preparation of activated carbon from leather waste: A new material containing small particle of chromium oxide. Materials Letters, 2008, 62, 3710-3712.	1.3	48
124	New materials based on modified synthetic Nb2O5 as photocatalyst for oxidation of organic contaminants. Catalysis Communications, 2008, 10, 330-332.	1.6	102
125	Catalytic oxidation of aromatic VOCs with Cr or Pd-impregnated Al-pillared bentonite: Byproduct formation and deactivation studies. Applied Clay Science, 2008, 39, 218-222.	2.6	70
126	Utilização de resÃduos da indústria de couro como fonte nitrogenada para o capim-elefante. Revista Brasileira De Ciencia Do Solo, 2008, 32, 417-424.	0.5	16

#	Article	IF	CITATIONS
127	Preparação e caracterização de carvão ativado produzido a partir de resÃduos do beneficiamento do café. Quimica Nova, 2008, 31, 1048-1052.	0.3	40
128	Espectroscopia Mössbauer na caracterização de compostos ferrosos em solos e sua relação com retenção de fÃ3sforo. Quimica Nova, 2008, 31, 1467-1471.	0.3	7
129	Preparação de carvão ativado em baixas temperaturas de carbonização a partir de rejeitos de café: utilização de FeCl3 como agente ativante. Quimica Nova, 2008, 31, 1296-1300.	0.3	23
130	Materiais à base de óxido de ferro para oxidação de compostos presentes no efluente da despolpa do café. Quimica Nova, 2008, 31, 1636-1640.	0.3	11
131	Nióbia magnética como adsorvente de contaminantes orgânicos em meio aquoso: efeito da temperatura e do pH. Quimica Nova, 2008, 31, 518-522.	0.3	20
132	Effect of organic acid to enhance the oxidative power of the fenton-like system: Computational and empirical evidences. Catalysis Communications, 2007, 8, 131-134.	1.6	42
133	SÃntese e propriedades catalÃŧicas em reações de oxidação de goethitas contendo nióbio. Quimica Nova, 2007, 30, 925-929.	0.3	25
134	A new catalyst material based on niobia/iron oxide composite on the oxidation of organic contaminants in water via heterogeneous Fenton mechanisms. Applied Catalysis A: General, 2007, 316, 117-124.	2.2	153
135	Cr-containing magnetites Fe3â~'xCrxO4: The role of Cr3+ and Fe2+ on the stability and reactivity towards H2O2 reactions. Applied Catalysis A: General, 2007, 332, 115-123.	2.2	156
136	Pure niobia as catalyst for the oxidation of organic contaminants: Mechanism study via ESI-MS and theoretical calculations. Chemical Physics Letters, 2007, 446, 133-137.	1.2	59
137	Natural and H2-reduced limonite for organic oxidation by a Fenton-like system: Mechanism study via ESI-MS and theoretical calculations. Journal of Molecular Catalysis A, 2007, 278, 145-151.	4.8	33
138	Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium. Journal of Hazardous Materials, 2007, 141, 344-347.	6.5	85
139	Compósitos magnéticos baseados em hidrotalcitas para a remoção de contaminantes aniônicos em água. Quimica Nova, 2007, 30, 1077-1081.	0.3	15
140	Produção de carvão a partir de resÃduo de erva-mate para a remoção de contaminantes orgânicos de meio aquoso. Ciencia E Agrotecnologia, 2007, 31, 1386-1391.	1.5	17
141	Novel active heterogeneous Fenton system based on Fe3â ^{~^} xMxO4 (Fe, Co, Mn, Ni): The role of M2+ species on the reactivity towards H2O2 reactions. Journal of Hazardous Materials, 2006, 129, 171-178.	6.5	428
142	Materiais magnéticos baseados em diferentes zeólitas para remoção de metais em água. Quimica Nova, 2005, 28, 751-755.	0.3	26
143	O estÃmulo ao empreendedorismo nos cursos de quÃmica: formando quÃmicos empreendedores. Quimica Nova, 2005, 28, S18-S25.	0.3	8
144	ResÃduos sólidos de curtumes como adsorventes para a remoção de corantes em meio aquoso. Quimica Nova, 2005, 28, 433-437.	0.3	55

#	Article	IF	CITATIONS
145	"Spin-Off" acadêmico: criando riquezas a partir de conhecimento e pesquisa. Quimica Nova, 2005, 28, S26-S35.	0.3	6
146	Fe3â^'xMnxO4 catalysts: phase transformations and carbon monoxide oxidation. Applied Catalysis A: General, 2004, 259, 253-259.	2.2	91
147	The effect of H2 treatment on the activity of activated carbon for the oxidation of organic contaminants in water and the H2O2 decomposition. Carbon, 2004, 42, 2279-2284.	5.4	149
148	Magnetic Particle Technology. A Simple Preparation of Magnetic Composites for the Adsorption of Water Contaminants. Journal of Chemical Education, 2004, 81, 248.	1.1	13
149	Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water. Water Research, 2004, 38, 3699-3704.	5.3	283
150	Remarkable effect of Co and Mn on the activity of Fe3â^'M O4 promoted oxidation of organic contaminants in aqueous medium with H2O2. Catalysis Communications, 2003, 4, 525-529.	1.6	130
151	Clay–iron oxide magnetic composites for the adsorption of contaminants in water. Applied Clay Science, 2003, 22, 169-177.	2.6	312
152	Transition metals supported on al-pilcs as catalysts for C6H5Cl oxidation. Brazilian Journal of Chemical Engineering, 2003, 20, 45-50.	0.7	9
153	Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon, 2002, 40, 2177-2183.	5.4	449
154	Development of hollow \hat{I}' -FeOOH structures for mercury removal from water. Water Practice and Technology, 0, , .	1.0	0
155	Synthetic Niobium Oxyhydroxide as a Bifunctional Catalyst for Production of Ethers and Allyl Alcohol from Waste Glycerol. Journal of the Brazilian Chemical Society, 0, , .	0.6	3