
## Antonio Tregrossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9381402/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Structure–property relationship in nanostructures of young and mature soot in premixed flames.<br>Proceedings of the Combustion Institute, 2009, 32, 697-704.                                       | 2.4 | 240       |
| 2  | Infrared spectroscopy of some carbon-based materials relevant in combustion: Qualitative and quantitative analysis of hydrogen. Carbon, 2014, 74, 127-138.                                          | 5.4 | 124       |
| 3  | Soot nanostructure evolution in premixed flames by High Resolution Electron Transmission<br>Microscopy (HRTEM). Proceedings of the Combustion Institute, 2015, 35, 1895-1902.                       | 2.4 | 120       |
| 4  | Analysis of process parameters for steady operations in methane mild combustion technology.<br>Proceedings of the Combustion Institute, 2005, 30, 2605-2612.                                        | 2.4 | 102       |
| 5  | The combustion of benzene in rich premixed flames at atmospheric pressure. Combustion and Flame, 1999, 117, 553-561.                                                                                | 2.8 | 93        |
| 6  | The effect of temperature on soot properties in premixed methane flames. Combustion and Flame, 2010, 157, 1959-1965.                                                                                | 2.8 | 93        |
| 7  | The effect of temperature on soot inception in premixed ethylene flames. Proceedings of the Combustion Institute, 1996, 26, 2327-2333.                                                              | 0.3 | 89        |
| 8  | Probing structures of soot formed in premixed flames of methane, ethylene and benzene. Proceedings of the Combustion Institute, 2013, 34, 1885-1892.                                                | 2.4 | 80        |
| 9  | Mass spectrometric analysis of large PAH in a fuel-rich ethylene flame. Proceedings of the Combustion<br>Institute, 2007, 31, 547-553.                                                              | 2.4 | 78        |
| 10 | Spectroscopic and compositional signatures of pah-loaded mixtures in the soot inception region of a premixed ethylene flame. Proceedings of the Combustion Institute, 1998, 27, 1481-1487.          | 0.3 | 74        |
| 11 | Aromatic structures of carbonaceous materials and soot inferred by spectroscopic analysis. Carbon, 2004, 42, 1583-1589.                                                                             | 5.4 | 70        |
| 12 | Hydrogen-enriched methane Mild Combustion in a well stirred reactor. Experimental Thermal and Fluid Science, 2007, 31, 469-475.                                                                     | 1.5 | 69        |
| 13 | Dehydrogenation and growth of soot in premixed flames. Proceedings of the Combustion Institute, 2015, 35, 1803-1809.                                                                                | 2.4 | 64        |
| 14 | Fluorescence Spectroscopy of Complex Aromatic Mixtures. Analytical Chemistry, 2004, 76, 2138-2143.                                                                                                  | 3.2 | 56        |
| 15 | Structural Characterization of Large Polycyclic Aromatic Hydrocarbons. Part 1: The Case of Coal Tar<br>Pitch and Naphthalene-Derived Pitch. Energy & Fuels, 2015, 29, 5714-5722.                    | 2.5 | 55        |
| 16 | Experimental and kinetic modeling study of sooting atmospheric-pressure cyclohexane flame.<br>Proceedings of the Combustion Institute, 2009, 32, 585-591.                                           | 2.4 | 51        |
| 17 | Effect of after-treatment systems on particulate matter emissions in diesel engine exhaust.<br>Experimental Thermal and Fluid Science, 2020, 116, 110107.                                           | 1.5 | 51        |
| 18 | Structural Characterization of Large Polycyclic Aromatic Hydrocarbons. Part 2: Solvent-Separated<br>Fractions of Coal Tar Pitch and Naphthalene-Derived Pitch. Energy & Fuels, 2016, 30, 2574-2583. | 2.5 | 47        |

ANTONIO TREGROSSI

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Optical properties of organic carbon and soot produced in an inverse diffusion flame. Carbon, 2017, 124, 372-379.                                                                                        | 5.4 | 47        |
| 20 | HRTEM and EELS investigations of flame-formed soot nanostructure. Fuel, 2018, 225, 218-224.                                                                                                              | 3.4 | 47        |
| 21 | Effect of Fuel/Air Ratio and Aromaticity on Sooting Behavior of Premixed Heptane Flames. Energy &<br>Fuels, 2007, 21, 2655-2662.                                                                         | 2.5 | 45        |
| 22 | Effect of fuel/air ratio and aromaticity on the molecular weight distribution of soot in premixed n-heptane flames. Proceedings of the Combustion Institute, 2009, 32, 803-810.                          | 2.4 | 45        |
| 23 | Fluorescence spectroscopy of aromatic species produced in rich premixed ethylene flames.<br>Chemosphere, 2001, 42, 835-841.                                                                              | 4.2 | 43        |
| 24 | Comparative analysis of the structure of carbon materials relevant in combustion. Chemosphere, 2003, 51, 1063-1069.                                                                                      | 4.2 | 41        |
| 25 | Formation of low- and high-molecular-weight hydrocarbon species in sooting ethylene flames.<br>Combustion Science and Technology, 2002, 174, 309-324.                                                    | 1.2 | 40        |
| 26 | Investigation on chemical and structural properties of coal- and petroleum-derived pitches and implications on physico-chemical properties (solubility, softening and coking). Fuel, 2019, 245, 478-487. | 3.4 | 37        |
| 27 | The relation between ultraviolet-excited fluorescence spectroscopy and aromatic species formed in rich laminar ethylene flames. Combustion and Flame, 2001, 125, 1225-1229.                              | 2.8 | 36        |
| 28 | Correlations of the Spectroscopic Properties with the Chemical Composition of Flame-Formed Aromatic Mixtures. Combustion Science and Technology, 2000, 153, 19-32.                                       | 1.2 | 35        |
| 29 | DYNAMIC BEHAVIOR OF METHANE OXIDATION IN PREMIXED FLOW REACTOR. Combustion Science and Technology, 2004, 176, 769-783.                                                                                   | 1.2 | 34        |
| 30 | Distribution of Soot Molecular Weight/Size along Premixed Flames as Inferred by Size Exclusion Chromatography. Energy & Fuels, 2007, 21, 136-140.                                                        | 2.5 | 31        |
| 31 | Experimental and modeling study on the molecular weight distribution and properties of carbon particles in premixed sooting flames. Proceedings of the Combustion Institute, 2011, 33, 633-640.          | 2.4 | 31        |
| 32 | The effect of temperature on the condensed phases formed in fuel-rich premixed benzene flames.<br>Combustion and Flame, 2012, 159, 2233-2242.                                                            | 2.8 | 31        |
| 33 | Laser-induced structural modifications of differently aged soot investigated by HRTEM. Combustion and Flame, 2019, 204, 13-22.                                                                           | 2.8 | 31        |
| 34 | Study on the contribution of different molecular weight species to the absorption UV–Visible spectra of flame-formed carbon species. Proceedings of the Combustion Institute, 2013, 34, 3661-3668.       | 2.4 | 30        |
| 35 | Size Exclusion Chromatography of Particulate Produced in Fuel-Rich Combustion of Different Fuels.<br>Energy & Fuels, 2003, 17, 565-570.                                                                  | 2.5 | 29        |
| 36 | Spectral Analysis in the UV-Visible Range for Revealing the Molecular Form of Combustion-Generated Carbonaceous Species. Combustion Science and Technology, 2012, 184, 1219-1231.                        | 1.2 | 27        |

ANTONIO TREGROSSI

| #  | Article                                                                                                                                                                       | IF               | CITATIONS         |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|
| 37 | Optical band gap analysis of soot and organic carbon in premixed ethylene flames: Comparison of in-situ and ex-situ absorption measurements. Carbon, 2020, 158, 89-96.        | 5.4              | 26                |
| 38 | Similarities and dissimilarities in n-hexane and benzene sooting premixed flames. Proceedings of the Combustion Institute, 2007, 31, 585-591.                                 | 2.4              | 24                |
| 39 | The formation of aromatic carbon in sooting ethylene flames. Proceedings of the Combustion Institute, 1994, 25, 679-685.                                                      | 0.3              | 19                |
| 40 | Spectral Signatures of Carbon Particulate Evolution in Methane Flames. Combustion Science and Technology, 2010, 182, 683-691.                                                 | 1.2              | 19                |
| 41 | SPECTRAL PROPERTIES OF SOOT IN THE UV-VISIBLE RANGE. Combustion Science and Technology, 2007, 179, 371-385.                                                                   | 1.2              | 17                |
| 42 | Sooting structure of a premixed toluene-doped methane flame. Combustion and Flame, 2018, 190, 252-259.                                                                        | 2.8              | 16                |
| 43 | PAHs and fullerenes as structural and compositional motifs tracing and distinguishing organic carbon from soot. Fuel, 2022, 309, 122356.                                      | 3.4              | 16                |
| 44 | Depletion of Fuel Aromatic Components and Formation of Aromatic Species in a Spray Flame as<br>Characterized by Fluorescence Spectroscopy. Energy & Fuels, 2001, 15, 987-995. | 2.5              | 14                |
| 45 | Monitoring of fuel consumption and aromatics formation in a kerosene spray flame as characterized by fluorescence spectroscopy. Chemosphere, 2003, 51, 1097-1102.             | 4.2              | 13                |
| 46 | The Effect of Temperature on Soot Properties in Premixed Ethylene Flames. Combustion Science and Technology, 2019, 191, 1558-1570.                                            | 1.2              | 11                |
| 47 | Thermophoretic sampling of large PAH (CÂ≥Â22–24) formed in flames. Fuel, 2020, 263, 116722.                                                                                   | 3.4              | 11                |
| 48 | Spectroscopic behavior of oxygenated combustion by-products. Chemosphere, 2003, 51, 1071-1077.                                                                                | 4.2              | 10                |
| 49 | On-line fast analysis of light hydrocarbons, PAH and radicals by molecular-beam time of flight mass spectrometry. Chemosphere, 2021, 276, 130174.                             | 4.2              | 6                 |
| 50 | Ensemble and time resolved light scattering measurements in isothermal and burning heavy oil sprays.<br>Proceedings of the Combustion Institute, 1992, 24, 1549-1555.         | 0.3              | 5                 |
| 51 | DILUTION EFFECTS IN NATURAL GAS MILD COMBUSTION. Clean Air, 2006, 7, 127-139.                                                                                                 | 0.0              | 4                 |
| 52 | Light Absorption Coefficient and Hydrogen Content as Key Properties for Inferring Structural Features of Soot. Combustion Science and Technology, 2014, 186, 634-643.         | 1.2              | 2                 |
| 53 | Study on the separation and thin film deposition of tarry aromatics mixtures (soot extract and) Tj ETQq1 1 0.784                                                              | 1314 rgBT<br>3.4 | /Oyerlock 10<br>2 |
|    |                                                                                                                                                                               |                  |                   |

54 Soot and PAH Formation in Rapeseed Oil Spray Combustion. Clean Air, 2002, 3, 53-68.

0.0 2

| #  | Article                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The Angular Polarization Ratio for the Characterization of Small Droplets in Oil Sprays. Particle and Particle Systems Characterization, 1993, 10, 19-25. | 1.2 | 1         |