
Antonio Lauto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9380603/publications.pdf Version: 2024-02-01

ΔΝΤΟΝΙΟ Ι Αυτο

#	Article	IF	CITATIONS
1	A conducting polymer with enhanced electronic stability applied in cardiac models. Science Advances, 2016, 2, e1601007.	4.7	173
2	Adhesive biomaterials for tissue reconstruction. Journal of Chemical Technology and Biotechnology, 2008, 83, 464-472.	1.6	119
3	Diode-pumped fiber lasers: A new clinical tool?. Lasers in Surgery and Medicine, 2002, 30, 184-190.	1.1	111
4	Electroconductive Hydrogel Based on Functional Poly(Ethylenedioxy Thiophene). Chemistry of Materials, 2016, 28, 6080-6088.	3.2	96
5	Photodynamic therapy with nanoparticles to combat microbial infection and resistance. Nanoscale, 2020, 12, 21034-21059.	2.8	66
6	Chitosan adhesive for laser tissue repair: In vitro characterization. Lasers in Surgery and Medicine, 2005, 36, 193-201.	1.1	59
7	Nerve repair: toward a sutureless approach. Neurosurgical Review, 2014, 37, 585-595.	1.2	53
8	Gecko-inspired chitosan adhesive for tissue repair. NPG Asia Materials, 2016, 8, e280-e280.	3.8	50
9	Sutureless Nerve Repair with Laser-Activated Chitosan Adhesive: A Pilot <i>in Vivo</i> Study. Photomedicine and Laser Surgery, 2008, 26, 227-234.	2.1	48
10	Photochemical tissue bonding with chitosan adhesive films. BioMedical Engineering OnLine, 2010, 9, 47.	1.3	46
11	Laser-activated solid protein bands for peripheral nerve repair: An in vivo study. , 1997, 21, 134-141.		45
12	Conductive Polymer Hydrogels. Springer Series on Polymer and Composite Materials, 2016, , 19-44.	0.5	42
13	Photoactive Organic Substrates for Cell Stimulation: Progress and Perspectives. Advanced Materials Technologies, 2019, 4, 1800744.	3.0	42
14	Bone marrow segmentation in leukemia using diffusion andT2 weighted echo planar magnetic resonance imaging. NMR in Biomedicine, 2000, 13, 321-328.	1.6	39
15	Self-expandable chitosan stent: design and preparation. Biomaterials, 2001, 22, 1869-1874.	5.7	37
16	Singleâ€Material OECTâ€Based Flexible Complementary Circuits Featuring Polyaniline in Both Conducting Channels. Advanced Functional Materials, 2021, 31, 2007205.	7.8	33
17	Lysozyme depolymerization of photo-activated chitosan adhesive films. Carbohydrate Polymers, 2015, 121, 56-63.	5.1	30
18	All-Organic Semiconductors for Electrochemical Biosensors: An Overview of Recent Progress in Material Design. Frontiers in Bioengineering and Biotechnology, 2019, 7, 237.	2.0	30

ΑΝΤΟΝΙΟ LAUTO

#	Article	IF	CITATIONS
19	An <i>in vitro</i> study of the photodynamic effect of rose bengal on <i>trichophyton rubrum</i> . Journal of Biophotonics, 2014, 7, 410-417.	1.1	29
20	Advances in Hydrogels Applied to Degenerative Diseases. Current Pharmaceutical Design, 2012, 18, 2558-2575.	0.9	29
21	Laserâ€activated adhesive films for sutureless median nerve anastomosis. Journal of Biophotonics, 2013, 6, 938-949.	1.1	28
22	Separation of chitosan by degree of acetylation using simple free solution capillary electrophoresis. Analytical and Bioanalytical Chemistry, 2013, 405, 6873-6877.	1.9	27
23	Tissue repair strength using chitosan adhesives with different physicalâ€chemical characteristics. Journal of Biophotonics, 2014, 7, 948-955.	1.1	27
24	Versatile Fabrication Approach of Conductive Hydrogels via Copolymerization with Vinyl Monomers. ACS Applied Materials & amp; Interfaces, 2017, 9, 44124-44133.	4.0	27
25	Micro―and Nanostructured Biomaterials for Sutureless Tissue Repair. Advanced Healthcare Materials, 2016, 5, 401-414.	3.9	25
26	Porous chitosan adhesives with L-DOPA for enhanced photochemical tissue bonding. Acta Biomaterialia, 2020, 101, 314-326.	4.1	25
27	Long term recovery of median nerve repair using laserâ€activated chitosan adhesive films. Journal of Biophotonics, 2015, 8, 196-207.	1.1	24
28	A flexible polyaniline-based bioelectronic patch. Biomaterials Science, 2018, 6, 493-500.	2.6	23
29	In vitro cell compatibility study of rose bengal–chitosan adhesives. Lasers in Surgery and Medicine, 2012, 44, 762-768.	1.1	21
30	Porous Chitosan Films Support Stem Cells and Facilitate Sutureless Tissue Repair. ACS Applied Materials & Interfaces, 2019, 11, 32613-32622.	4.0	21
31	Stimulation and Repair of Peripheral Nerves Using Bioadhesive Graftâ€Antenna. Advanced Science, 2019, 6, 1801212.	5.6	20
32	An investigation into the inhibitory effect of ultraviolet radiation on Trichophyton rubrum. Lasers in Medical Science, 2014, 29, 157-163.	1.0	17
33	BioPEGylation of Polyhydroxyalkanoates: Influence on Properties and Satellite-Stem Cell Cycle. Biomacromolecules, 2008, 9, 2719-2726.	2.6	16
34	Light treatments of nail fungal infections. Journal of Biophotonics, 2018, 11, e201700350.	1.1	16
35	Laser-assisted demucosalized gastrocystoplasty with autoaugmentation in a canine model. Urology, 2000, 55, 437-442.	0.5	15
36	Drug-delivery study and estimation of polymer–solvent interaction parameter for bisacrylate ester-modified Pluronic hydrogels. International Journal of Pharmaceutics, 2008, 360, 231-235.	2.6	15

ΑΝΤΟΝΙΟ LAUTO

#	Article	IF	CITATIONS
37	Integration of extracellular matrix with chitosan adhesive film for sutureless tissue fixation. Lasers in Surgery and Medicine, 2009, 41, 366-371.	1.1	15
38	Fabrication and Application of Rose Bengal-chitosan Films in Laser Tissue Repair. Journal of Visualized Experiments, 2012, , .	0.2	14
39	Sensory perturbations using suture and sutureless repair of transected median nerve in rats. Somatosensory & Motor Research, 2016, 33, 20-28.	0.4	14
40	Porous and sutureless bioelectronic patch with retained electronic properties under cyclic stretching. Applied Materials Today, 2019, 15, 315-322.	2.3	14
41	Synthesis and characterization of novel radiopaque poly(allyl amine) nanoparticles. Nanotechnology, 2010, 21, 335603.	1.3	12
42	Effective photodynamic treatment of <i>Trichophyton</i> species with Rose Bengal. Journal of Biophotonics, 2021, 14, e202000340.	1.1	10
43	A conjugated polymerâ€liposome complex: A contiguous waterâ€stable, electronic, and optical interface. View, 2021, 2, 20200081.	2.7	9
44	Characterisation of a novel light activated adhesive scaffold: Potential for device attachment. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 433-445.	1.5	8
45	Molecular design of an electropolymerized copolymer with carboxylic and sulfonic acid functionalities. Synthetic Metals, 2022, 285, 117029.	2.1	8
46	Fabrication and characterization of chitosan nanoparticles using the coffeeâ€ring effect for photodynamic therapy. Lasers in Surgery and Medicine, 2022, 54, 758-766.	1.1	8
47	Laser-activated protein solder for peripheral nerve repair. , 1995, 2395, 542.		7
48	Semitransparent bandages based on chitosan and extracellular matrix for photochemical tissue bonding. BioMedical Engineering OnLine, 2018, 17, 7.	1.3	7
49	Genetic Tolerance to Rose Bengal Photodynamic Therapy and Antifungal Clinical Application for Onychomycosis. Advanced Therapeutics, 2019, 2, 1800105.	1.6	7
50	A Phosphonated Poly(ethylenedioxythiophene) Derivative with Low Oxidation Potential for Energy-Efficient Bioelectronic Devices. Chemistry of Materials, 2022, 34, 140-151.	3.2	7
51	<title>Laser-activated protein bands for peripheral nerve repair</title> . , 1996, , .		5
52	Effect of laser welding with human serum albumin on the expression of P-selectin on platelets. , 1999, 25, 438-444.		5
53	<title>Laser solder repair technique for nerve anastomosis: temperatures required for optimal tensile strength</title> . , 1998, , .		2
54	ASSESSMENT OF THE DEGRADATION OF DENATURED ALBUMIN SOLDER BY HUMAN URINE. Journal of Urology, 2000, 163, 634-637.	0.2	2

ΑΝΤΟΝΙΟ LAUTO

#	Article	IF	CITATIONS
55	A One Step Procedure toward Conductive Suspensions of Liposomeâ€Polyaniline Complexes. Macromolecular Bioscience, 2020, 20, 2000103.	2.1	2
56	Impact of Sterilization on a Conjugated Polymer-Based Bioelectronic Patch. ACS Applied Polymer Materials, 2021, 3, 2541-2552.	2.0	2
57	<title>Low-temperature solder for laser tissue welding</title> . , 2003, , .		1
58	Chitosan Adhesive Films for Photochemical Tissue Bonding. AIP Conference Proceedings, 2011, , .	0.3	1
59	A genome-wide screen for tolerance to rose bengal photodynamic therapy and its use in onychomycosis treatment. , 2019, , .		1
60	<title>Laser-activated solder weld repair of the inferior alveolar nerve in rats</title> . , 1997, , .		0
61	Albumin-genipin solder for laser tissue welding. , 2004, , .		0
62	ECM-Chitosan Bandage for Tissue Repair. , 2010, , .		0
63	Chitosan-ECM bandages for photochemical tissue repair. , 2011, , .		0