Mark D Wilkinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/938041/publications.pdf

Version: 2024-02-01

91 papers 13,118 citations

257101 24 h-index 79541 73 g-index

113 all docs

113 docs citations

113 times ranked 24997 citing authors

#	Article	IF	Citations
1	The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 2016, 3, 160018.	2.4	8,670
2	The Bioperl Toolkit: Perl Modules for the Life Sciences. Genome Research, 2002, 12, 1611-1618.	2.4	1,427
3	BioMOBY: An open source biological web services proposal. Briefings in Bioinformatics, 2002, 3, 331-341.	3.2	308
4	Cloudy, increasingly FAIR; revisiting the FAIR Data guiding principles for the European Open Science Cloud. Information Services and Use, 2017, 37, 49-56.	0.1	232
5	Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum Plant Cell, 1995, 7, 1501-1510.	3.1	198
6	FAIR Principles: Interpretations and Implementation Considerations. Data Intelligence, 2020, 2, 10-29.	0.8	149
7	Tag clouds for summarizing web search results. , 2007, , .		147
8	A design framework and exemplar metrics for FAIRness. Scientific Data, 2018, 5, 180118.	2.4	145
9	The Semanticscience Integrated Ontology (SIO) for biomedical research and knowledge discovery. Journal of Biomedical Semantics, 2014, 5, 14.	0.9	138
10	Quantitative evaluation of bias in PCR amplification and next-generation sequencing derived from metabarcoding samples. Analytical and Bioanalytical Chemistry, 2015, 407, 1841-1848.	1.9	110
11	Interoperability with Moby 1.0 It's better than sharing your toothbrush!. Briefings in Bioinformatics, $2008, 9, 220-231$.	3.2	91
12	The Semantic Automated Discovery and Integration (SADI) Web service Design-Pattern, API and Reference Implementation. Journal of Biomedical Semantics, 2011, 2, 8.	0.9	88
13	BioMOBY Successfully Integrates Distributed Heterogeneous Bioinformatics Web Services. The PlaNet Exemplar Case. Plant Physiology, 2005, 138, 5-17.	2.3	84
14	Evaluating FAIR maturity through a scalable, automated, community-governed framework. Scientific Data, 2019, 6, 174.	2.4	82
15	The Life Sciences Semantic Web is Full of Creeps!. Briefings in Bioinformatics, 2006, 7, 275-286.	3.2	73
16	Interoperability and FAIRness through a novel combination of Web technologies. PeerJ Computer Science, 0, 3, e110.	2.7	58
17	Applying Semantic Web Services to Bioinformatics: Experiences Gained, Lessons Learnt. Lecture Notes in Computer Science, 2004, , 350-364.	1.0	55
18	BioMoby extensions to the Taverna workflow management and enactment software. BMC Bioinformatics, 2006, 7, 523.	1.2	54

#	Article	IF	Citations
19	Semi-automatic web service composition for the life sciences using the BioMoby semantic web framework. Journal of Biomedical Informatics, 2008, 41, 837-847.	2.5	53
20	BioHackathon series in 2011 and 2012: penetration of ontology and linked data in life science domains. Journal of Biomedical Semantics, 2014, 5, 5.	0.9	47
21	The Relationship between Host Lifespan and Pathogen Reservoir Potential: An Analysis in the System Arabidopsis thaliana-Cucumber mosaic virus. PLoS Pathogens, 2014, 10, e1004492.	2.1	45
22	Unusual Floral Organs Controls Meristem Identity and Organ Primordia Fate in Arabidopsis. Plant Cell, 1995, 7, 1485.	3.1	44
23	Molecular characterization of a novel ssRNA ourmia-like virus from the rice blast fungus Magnaporthe oryzae. Archives of Virology, 2017, 162, 891-895.	0.9	33
24	The DBCLS BioHackathon: standardization and interoperability for bioinformatics web services and workflows. Journal of Biomedical Semantics, 2010, 1, 8.	0.9	31
25	SADI, SHARE, and the in silico scientific method. BMC Bioinformatics, 2010, 11, S7.	1.2	28
26	Endogenous indole-3-acetamide levels contribute to the crosstalk between auxin and abscisic acid, and trigger plant stress responses in Arabidopsis. Journal of Experimental Botany, 2021, 72, 459-475.	2.4	28
27	Genome-wide analysis of the H3K27me3 epigenome and transcriptome in Brassica rapa. GigaScience, 2019, 8, .	3.3	27
28	The 3rd DBCLS BioHackathon: improving life science data integration with Semantic Web technologies. Journal of Biomedical Semantics, 2013, 4, 6.	0.9	26
29	Comparison of ESTs from juvenile and adult phases of the giant unicellular green alga Acetabularia acetabulum. BMC Plant Biology, 2004, 4, 3.	1.6	25
30	Publishing FAIR Data: An Exemplar Methodology Utilizing PHI-Base. Frontiers in Plant Science, 2016, 7, 641.	1.7	25
31	SHARE: A Semantic Web Query Engine for Bioinformatics. Lecture Notes in Computer Science, 2009, , 367-369.	1.0	23
32	Moby and Moby 2: Creatures of the Deep (Web). Briefings in Bioinformatics, 2009, 10, 114-128.	3.2	21
33	Semantically-Guided Workflow Construction in Taverna: The SADI and BioMoby Plug-Ins. Lecture Notes in Computer Science, 2010, , 301-312.	1.0	20
34	The Emergent Discipline of Health Web Science. Journal of Medical Internet Research, 2013, 15, e166.	2.1	20
35	Gbrowse Moby: a Web-based browser for BioMoby Services. Source Code for Biology and Medicine, 2006, 1, 4.	1.7	19
36	The 2nd DBCLS BioHackathon: interoperable bioinformatics Web services for integrated applications. Journal of Biomedical Semantics, 2011, 2, 4.	0.9	19

3

#	Article	IF	Citations
37	iHOPerator: user-scripting a personalized bioinformatics Web, starting with the iHOP website. BMC Bioinformatics, 2006, 7, 534.	1.2	17
38	Analysis of a Multilevel Diagnosis Decision Support System and Its Implications: A Case Study. Computational and Mathematical Methods in Medicine, 2012, 2012, 1-9.	0.7	17
39	SADI Semantic Web Services - & Samp; #x201A; cause you can't always GET what you want!., 2009,,.		16
40	<i>MECP2</i> variation in Rett syndrome-An overview of current coverage of genetic and phenotype data within existing databases. Human Mutation, 2018, 39, 914-924.	1,1	15
41	FAST, CHEAP AND OUT OF CONTROL: A ZERO CURATION MODEL FOR ONTOLOGY DEVELOPMENT. , 2005, , .		14
42	MDPbiome: microbiome engineering through prescriptive perturbations. Bioinformatics, 2018, 34, i838-i847.	1.8	14
43	Social tagging in the life sciences: characterizing a new metadata resource for bioinformatics. BMC Bioinformatics, 2009, 10, 313.	1.2	13
44	Enhanced reproducibility of SADI web service workflows with Galaxy and Docker. GigaScience, 2015, 4, 59.	3.3	12
45	Robust and automatic definition of microbiome states. PeerJ, 2019, 7, e6657.	0.9	12
46	Vcsa1 Gene Peptides for the Treatment of Inflammatory and Allergic Reactions. Recent Patents on Inflammation and Allergy Drug Discovery, 2007, 1, 124-132.	3.9	11
47	Optimization of Distributed SPARQL Queries Using Edmonds' Algorithm and Prim's Algorithm. , 2009, , .		11
48	Semantic modelling of common data elements for rare disease registries, and a prototype workflow for their deployment over registry data. Journal of Biomedical Semantics, 2022, 13, 9.	0.9	11
49	SPARQL Assist language-neutral query composer. BMC Bioinformatics, 2012, 13, S2.	1.2	10
50	Automatically exposing OpenLifeData via SADI semantic Web Services. Journal of Biomedical Semantics, 2014, 5, 46.	0.9	10
51	The SADI Personal Health Lens: A Web Browser-Based System for Identifying Personally Relevant Drug Interactions. JMIR Research Protocols, 2013, 2, e14.	0.5	10
52	Different Roles of Flowering-Time Genes in the Activation of Floral Initiation Genes in Arabidopsis. Plant Cell, 1997, 9, 1921.	3.1	9
53	Genquire: genome annotation browser/editor. Bioinformatics, 2002, 18, 1398-1399.	1.8	9
54	<i>VPS13D</i> Gene Variant Is Associated with Altered IL-6 Production and Mortality in Septic Shock. Journal of Innate Immunity, 2015, 7, 545-553.	1.8	9

#	Article	IF	CITATIONS
55	Preparing Data at the Source to Foster Interoperability across Rare Disease Resources. Advances in Experimental Medicine and Biology, 2017, 1031, 165-179.	0.8	9
56	The Indole-3-Acetamide-Induced Arabidopsis Transcription Factor MYB74 Decreases Plant Growth and Contributes to the Control of Osmotic Stress Responses. Frontiers in Plant Science, $0, 13, \ldots$	1.7	9
57	DataBiNS: a BioMoby-based data-mining workflow for biological pathways and non-synonymous SNPs. Bioinformatics, 2007, 23, 780-782.	1.8	8
58	Virulence―and signalingâ€associated genes display a preference for long 3′ <scp>UTR</scp> s during rice infection and metabolic stress in the rice blast fungus. New Phytologist, 2019, 221, 399-414.	3.5	7
59	Using a Novel Data Transformation Technique to Provide the EMBOSS Software Suite as Semantic Web Services., 2007,,.		6
60	Executing SADI services in Galaxy. Journal of Biomedical Semantics, 2014, 5, 42.	0.9	6
61	OWL-DL Domain-Models as Abstract Workflows. Lecture Notes in Computer Science, 2012, , 56-66.	1.0	6
62	Extracting Diagnostic Knowledge from MedLine Plus: A Comparison between MetaMap and cTAKES Approaches. Current Bioinformatics, 2018, 13, 573-582.	0.7	6
63	OPPL-Galaxy, a Galaxy tool for enhancing ontology exploitation as part of bioinformatics workflows. Journal of Biomedical Semantics, 2013, 4, 2.	0.9	5
64	The Generation Challenge Programme Platform: Semantic Standards and Workbench for Crop Science. International Journal of Plant Genomics, 2008, 2008, 1-6.	2.2	5
65	BioHackathon 2015: Semantics of data for life sciences and reproducible research. F1000Research, 2020, 9, 136.	0.8	5
66	Extending and encoding existing biological terminologies and datasets for use in the reasoned semantic web. Journal of Biomedical Semantics, 2012, 3, 6.	0.9	4
67	OWL2Perl: creating Perl modules from OWL class definitions. Bioinformatics, 2010, 26, 2357-2358.	1.8	3
68	Health Web Science. Foundations and Trends in Web Science, 2013, 4, 269-419.	0.5	3
69	Nanopublishing Clinical Diagnoses: Tracking Diagnostic Knowledge Base Content and Utilization. , 2014, , .		3
70	Automatic detection and resolution of measurement-unit conflicts in aggregated data. BMC Medical Genomics, 2014, 7, S12.	0.7	3
71	DataBiNS-Viz: A Web-Based Tool for Visualization of Non-Synonymous SNP Data. Journal of Proteomics and Bioinformatics, 2008, 01, 233-236.	0.4	3
72	Tools in Scientific Workflow Composition. Lecture Notes in Computer Science, 2010, , 258-260.	1.0	3

#	Article	IF	Citations
73	Conserved and distinct roles of H3K27me3 demethylases regulating flowering time in <i>Brassica rapa</i> . Plant, Cell and Environment, 2022, 45, 1428-1441.	2.8	3
74	The Semantic Automated Discovery and Integration (SADI) Web service Design-Pattern, API and Reference Implementation. Nature Precedings, $0, \dots$	0.1	2
75	Genomics Data Resources: Frameworks and Standards. Methods in Molecular Biology, 2012, 856, 489-511.	0.4	2
76	Leveraging Applications of Formal Methods, Verification and Validation. Specialized Techniques and Applications. Lecture Notes in Computer Science, 2014, , .	1.0	2
77	Bioinformatics Tools for Next-Generation RNA Sequencing Analysis. , 2014, , 371-391.		2
78	Biological Resource Discovery. , 2009, , 220-223.		2
79	Genome-wide polyadenylation site mapping datasets in the rice blast fungus Magnaporthe oryzae. Scientific Data, 2018, 5, 180271.	2.4	2
80	Interoperability With Moby 1.0 - It's Better Than Sharing Your Toothbrush!. Nature Precedings, 2008, , .	0.1	1
81	Biological Resource Discovery. , 2017, , 1-5.		1
82	Ontology engineering using volunteer labor. , 2007, , .		0
83	SPARQL Assist Language Neutral Query Composer. Nature Precedings, 2010, , .	0.1	0
84	The SADI plug-in to IO informatics' sentient knowledge explorer. , 2012, , .		0
85	Web Services and the Semantic Web for Life Science Data. , 2009, , 3513-3520.		O
86	Bioscientific Data Processing and Modeling. Lecture Notes in Computer Science, 2012, , 7-11.	1.0	0
87	Web Services and the Semantic Web for Life Science Data. , 2017, , 1-8.		O
88	Biological Resource Discovery. , 2018, , 283-287.		0
89	Biological Metadata Management. , 2018, , 277-283.		0
90	Web Services and the Semantic Web for Life Science Data. , 2018, , 4669-4677.		0

#	Article	IF	CITATIONS
91	BioHackathon series in 2013 and 2014: improvements of semantic interoperability in life science data and services. F1000Research, 0, 8, 1677.	0.8	0