Marta Magariños Sanchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9380290/publications.pdf

Version: 2024-02-01

20 papers 6,606 citations

623188 14 h-index 19 g-index

20 all docs

20 docs citations

times ranked

20

15939 citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	2 10 Jf 50 1	702 _{1,430} 702 _{1,430}
3	AKT Signaling Mediates IGF-I Survival Actions on Otic Neural Progenitors. PLoS ONE, 2012, 7, e30790.	1.1	54
4	Early otic development depends on autophagy for apoptotic cell clearance and neural differentiation. Cell Death and Disease, 2012, 3, e394-e394.	2.7	51
5	Nab controls the activity of the zinc-finger transcription factors Squeeze and Rotund in Drosophila development. Development (Cambridge), 2007, 134, 1845-1852.	1.2	42
6	TGFÎ ² 2-induced senescence during early inner ear development. Scientific Reports, 2019, 9, 5912.	1.6	42
7	Autophagy During Vertebrate Development. Cells, 2012, 1, 428-448.	1.8	41
8	Early Development of the Vertebrate Inner Ear. Anatomical Record, 2012, 295, 1775-1790.	0.8	39
9	Age-regulated function of autophagy in the mouse inner ear. Hearing Research, 2015, 330, 39-50.	0.9	36
10	RAF Kinase Activity Regulates Neuroepithelial Cell Proliferation and Neuronal Progenitor Cell Differentiation during Early Inner Ear Development. PLoS ONE, 2010, 5, e14435.	1.1	36
11	Neurosecretory identity conferred by theapterousgene: Lateral horn leucokinin neurons inDrosophila. Journal of Comparative Neurology, 2003, 457, 123-132.	0.9	27
12	Autophagy in the Vertebrate Inner Ear. Frontiers in Cell and Developmental Biology, 2017, 5, 56.	1.8	22
13	echinoidmutants exhibit neurogenic phenotypes and show synergistic interactions with the Notch signaling pathway. Development (Cambridge), 2003, 130, 6295-6304.	1.2	20
14	Complementary and distinct roles of autophagy, apoptosis and senescence during early inner ear development. Hearing Research, 2019, 376, 86-96.	0.9	17
15	C-Raf deficiency leads to hearing loss and increased noise susceptibility. Cellular and Molecular Life Sciences, 2015, 72, 3983-3998.	2.4	16
16	Squeeze involvement in the specification of Drosophila leucokinergic neurons: Different regulatory mechanisms endow the same neuropeptide selection. Mechanisms of Development, 2007, 124, 427-440.	1.7	14
17	Ceramide Kinase Inhibition Blocks IGF-1-Mediated Survival of Otic Neurosensory Progenitors by Impairing AKT Phosphorylation. Frontiers in Cell and Developmental Biology, 2021, 9, 678760.	1.8	6
18	Early Development of the Vertebrate Inner Ear. , 2014, , 1-30.		6

#	Article	IF	CITATIONS
19	Editorial: Aging, neurogenesis and neuroinflammation in hearing loss and protection. Frontiers in Aging Neuroscience, 2015, 7, 138.	1.7	4
20	Otic Neurogenesis Is Regulated by $TGF\hat{I}^2$ in a Senescence-Independent Manner. Frontiers in Cellular Neuroscience, 2020, 14, 217.	1.8	2