
## Maksudbek Yusupov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9379757/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Low-Temperature Plasma for Biology, Hygiene, and Medicine: Perspective and Roadmap. IEEE<br>Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 127-157.                                                                                        | 2.7 | 64        |
| 2  | Distribution of lipid aldehydes in phase-separated membranes: A molecular dynamics study. Archives of<br>Biochemistry and Biophysics, 2022, 717, 109136.                                                                                                    | 1.4 | 2         |
| 3  | Effect of Cysteine Oxidation in SARS-CoV-2 Receptor-Binding Domain on Its Interaction with Two Cell<br>Receptors: Insights from Atomistic Simulations. Journal of Chemical Information and Modeling, 2022,<br>62, 129-141.                                  | 2.5 | 9         |
| 4  | Oxidation of Innate Immune Checkpoint CD47 on Cancer Cells with Non-Thermal Plasma. Cancers, 2021, 13, 579.                                                                                                                                                 | 1.7 | 26        |
| 5  | Lipid Oxidation: Role of Membrane Phase-Separated Domains. Journal of Chemical Information and<br>Modeling, 2021, 61, 2857-2868.                                                                                                                            | 2.5 | 12        |
| 6  | Oxidative damage to hyaluronan–CD44 interactions as an underlying mechanism of action of oxidative stress-inducing cancer therapy. Redox Biology, 2021, 43, 101968.                                                                                         | 3.9 | 41        |
| 7  | Unraveling the permeation of reactive species across nitrated membranes by computer simulations.<br>Computers in Biology and Medicine, 2021, 136, 104768.                                                                                                   | 3.9 | 7         |
| 8  | Effect of Mutation and Disulfide Bond Formation on the Catalytic Site of Monomeric Cytoglobin: A<br>Molecular Level Insight. Plasma Medicine, 2021, 11, 41-51.                                                                                              | 0.2 | 4         |
| 9  | Growth onset of perylene-based nanocrystals. Uzbekiston Fizika žurnali, 2021, 23, 7-11.                                                                                                                                                                     | 0.0 | 0         |
| 10 | How do nitrated lipids affect the properties of phospholipid membranes?. Archives of Biochemistry and Biophysics, 2020, 695, 108548.                                                                                                                        | 1.4 | 10        |
| 11 | The penetration of reactive oxygen and nitrogen species across the stratum corneum. Plasma<br>Processes and Polymers, 2020, 17, 2000005.                                                                                                                    | 1.6 | 20        |
| 12 | Influence of osmolytes and ionic liquids on the Bacteriorhodopsin structure in the absence and<br>presence of oxidative stress: A combined experimental and computational study. International Journal<br>of Biological Macromolecules, 2020, 148, 657-665. | 3.6 | 13        |
| 13 | Parametrization and Molecular Dynamics Simulations of Nitrogen Oxyanions and Oxyacids for<br>Applications in Atmospheric and Biomolecular Sciences. Journal of Physical Chemistry B, 2020, 124,<br>1082-1089.                                               | 1.2 | 16        |
| 14 | Plasma and Plasma–Cell Interaction Simulations. Springer Series on Atomic, Optical, and Plasma<br>Physics, 2020, , 169-208.                                                                                                                                 | 0.1 | 1         |
| 15 | How membrane lipids influence plasma delivery of reactive oxygen species into cells and subsequent<br>DNA damage: an experimental and computational study. Physical Chemistry Chemical Physics, 2019, 21,<br>19327-19341.                                   | 1.3 | 28        |
| 16 | Molecular dynamics simulations of mechanical stress on oxidized membranes. Biophysical Chemistry, 2019, 254, 106266.                                                                                                                                        | 1.5 | 6         |
| 17 | Effect of oxidative stress on cystine transportation by xC‾ antiporter. Archives of Biochemistry and Biophysics, 2019, 674, 108114.                                                                                                                         | 1.4 | 7         |
| 18 | Transport of Reactive Oxygen and Nitrogen Species across Aquaporin: A Molecular Level Picture.<br>Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-11.                                                                                              | 1.9 | 32        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Plasma for cancer treatment: How can RONS penetrate through the cell membrane? Answers from computer modeling. Frontiers of Chemical Science and Engineering, 2019, 13, 253-263.                  | 2.3 | 27        |
| 20 | Oxidation destabilizes toxic amyloid beta peptide aggregation. Scientific Reports, 2019, 9, 5476.                                                                                                 | 1.6 | 33        |
| 21 | Transport of cystine across xCâ^ antiporter. Archives of Biochemistry and Biophysics, 2019, 664, 117-126.                                                                                         | 1.4 | 10        |
| 22 | Enhancement of cellular glucose uptake by reactive species: a promising approach for diabetes therapy. RSC Advances, 2018, 8, 9887-9894.                                                          | 1.7 | 12        |
| 23 | Atomic scale simulation of H <sub>2</sub> O <sub>2</sub> permeation through aquaporin: toward the understanding of plasma cancer treatment. Journal Physics D: Applied Physics, 2018, 51, 125401. | 1.3 | 42        |
| 24 | Atomic scale understanding of the permeation of plasma species across native and oxidized membranes. Journal Physics D: Applied Physics, 2018, 51, 365203.                                        | 1.3 | 32        |
| 25 | The effect of reactive oxygen and nitrogen species on the structure of cytoglobin: A potential tumor suppressor. Redox Biology, 2018, 19, 1-10.                                                   | 3.9 | 31        |
| 26 | Possible Mechanism of Glucose Uptake Enhanced by Cold Atmospheric Plasma: Atomic Scale<br>Simulations. Plasma, 2018, 1, 119-125.                                                                  | 0.7 | 3         |
| 27 | Impact of plasma oxidation on structural features of human epidermal growth factor. Plasma<br>Processes and Polymers, 2018, 15, 1800022.                                                          | 1.6 | 26        |
| 28 | Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes.<br>Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 839-847.                         | 1.1 | 116       |
| 29 | Phosphatidylserine flipâ€flop induced by oxidation of the plasma membrane: a better insight by atomic scale modeling. Plasma Processes and Polymers, 2017, 14, 1700013.                           | 1.6 | 18        |
| 30 | Effect of head group and lipid tail oxidation in the cell membrane revealed through integrated simulations and experiments. Scientific Reports, 2017, 7, 5761.                                    | 1.6 | 88        |
| 31 | Detection of CO2 using CNT-based sensors: Role of Fe catalyst on sensitivity and selectivity. Materials<br>Chemistry and Physics, 2017, 186, 353-364.                                             | 2.0 | 33        |
| 32 | Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes. Scientific Reports, 2016, 6, 34419.                          | 1.6 | 71        |
| 33 | Multi-level molecular modelling for plasma medicine. Journal Physics D: Applied Physics, 2016, 49, 054002.                                                                                        | 1.3 | 26        |
| 34 | Selective Plasma Oxidation of Ultrasmall Si Nanowires. Journal of Physical Chemistry C, 2016, 120, 472-477.                                                                                       | 1.5 | 4         |
| 35 | A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma. Scientific Reports, 2015, 5, 13849.                   | 1.6 | 73        |
| 36 | How do plasma-generated OH radicals react with biofilm components? Insights from atomic scale simulations. Biointerphases, 2015, 10, .                                                            | 0.6 | 19        |

ΜΑΚSUDBEK YUSUPOV

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Structural modification of the skin barrier by OH radicals: a reactive molecular dynamics study for plasma medicine. Journal Physics D: Applied Physics, 2015, 48, 155202. | 1.3 | 30        |
| 38 | Inactivation of the Endotoxic Biomolecule Lipid A by Oxygen Plasma Species: A Reactive Molecular<br>Dynamics Study. Plasma Processes and Polymers, 2015, 12, 162-171.      | 1.6 | 43        |
| 39 | Reactive molecular dynamics simulations of oxygen species in a liquid water layer of interest for plasma medicine. Journal Physics D: Applied Physics, 2014, 47, 025205.   | 1.3 | 97        |
| 40 | Computer simulations of plasma–biomolecule and plasma–tissue interactions for a better insight in plasma medicine. Journal Physics D: Applied Physics, 2014, 47, 293001.   | 1.3 | 39        |
| 41 | Reactive Molecular Dynamics Simulations for a Better Insight in Plasma Medicine. Plasma Processes and Polymers, 2014, 11, 1156-1168.                                       | 1.6 | 48        |
| 42 | Plasma-Induced Destruction of Bacterial Cell Wall Components: A Reactive Molecular Dynamics<br>Simulation. Journal of Physical Chemistry C, 2013, 117, 5993-5998.          | 1.5 | 136       |
| 43 | Modeling of plasma and plasma-surface interactions for medical, environmental and nano applications. Journal of Physics: Conference Series, 2012, 399, 012011.             | 0.3 | 8         |
| 44 | Atomic-scale simulations of reactive oxygen plasma species interacting with bacterial cell walls. New Journal of Physics, 2012, 14, 093043.                                | 1.2 | 77        |
| 45 | Sputter deposition of MgxAlyOzthin films in a dual-magnetron device: a multi-species Monte Carlo<br>model. New Journal of Physics, 2012, 14, 073043.                       | 1.2 | 4         |
| 46 | Behavior of electrons in a dual-magnetron sputter deposition system: a Monte Carlo model. New<br>Journal of Physics, 2011, 13, 033018.                                     | 1.2 | 12        |
| 47 | Elucidating the asymmetric behavior of the discharge in a dual magnetron sputter deposition system.<br>Applied Physics Letters, 2011, 98, .                                | 1.5 | 6         |