John T Fassett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9379659/publications.pdf

Version: 2024-02-01

38	2,173	27 h-index	37
papers	citations		g-index
38	38	38	3714
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Novel role of mitochondrial GTPases 1 in pathological cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2019, 128, 105-116.	0.9	11
2	Adenosine kinase attenuates cardiomyocyte microtubule stabilization and protects against pressure overload-induced hypertrophy and LV dysfunction. Journal of Molecular and Cellular Cardiology, 2019, 130, 49-58.	0.9	19
3	Repetitive ischemia increases myocardial dimethylarginine dimethylaminohydrolase 1 expression. Vascular Medicine, 2017, 22, 179-188.	0.8	6
4	Role of bone marrow-derived CD11c+ dendritic cells in systolic overload-induced left ventricular inflammation, fibrosis and hypertrophy. Basic Research in Cardiology, 2017, 112, 25.	2.5	36
5	Cardiomyocyte dimethylarginine dimethylaminohydrolase-1 (DDAH1) plays an important role in attenuating ventricular hypertrophy and dysfunction. Basic Research in Cardiology, 2017, 112, 55.	2.5	30
6	Effect of asymmetric dimethylarginine (ADMA) on heart failure development. Nitric Oxide - Biology and Chemistry, 2016, 54, 73-81.	1.2	45
7	Increasing Regulatory T Cells With Interleukin-2 and Interleukin-2 Antibody Complexes Attenuates Lung Inflammation and Heart Failure Progression. Hypertension, 2016, 68, 114-122.	1.3	64
8	Genetic and Pharmacologic Inhibition of the Chemokine Receptor CXCR2 Prevents Experimental Hypertension and Vascular Dysfunction. Circulation, 2016, 134, 1353-1368.	1.6	110
9	Formation of Nitric Oxide by Aldehyde Dehydrogenase-2 Is Necessary and Sufficient for Vascular Bioactivation of Nitroglycerin. Journal of Biological Chemistry, 2016, 291, 24076-24084.	1.6	31
10	CD28/B7 Deficiency Attenuates Systolic Overload-Induced Congestive Heart Failure, Myocardial and Pulmonary Inflammation, and Activated T Cell Accumulation in the Heart and Lungs. Hypertension, 2016, 68, 688-696.	1.3	37
11	Scavenging of nitric oxide by hemoglobin in the tunica media of porcine coronary arteries. Nitric Oxide - Biology and Chemistry, 2016, 54, 8-14.	1.2	9
12	Metformin Protects Against Systolic Overload–Induced Heart Failure Independent of AMP-Activated Protein Kinase α2. Hypertension, 2014, 63, 723-728.	1.3	66
13	Loss of the Eukaryotic Initiation Factor 2α Kinase General Control Nonderepressible 2 Protects Mice From Pressure Overload–Induced Congestive Heart Failure Without Affecting Ventricular Hypertrophy. Hypertension, 2014, 63, 128-135.	1.3	40
14	Double-Stranded RNA–Dependent Protein Kinase Deficiency Protects the Heart From Systolic Overload-Induced Congestive Heart Failure. Circulation, 2014, 129, 1397-1406.	1.6	41
15	Endoplasmic Reticulum Stress Sensor Protein Kinase R–Like Endoplasmic Reticulum Kinase (PERK) Protects Against Pressure Overload–Induced Heart Failure and Lung Remodeling. Hypertension, 2014, 64, 738-744.	1.3	86
16	AMPK attenuates microtubule proliferation in cardiac hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H749-H758.	1.5	40
17	Regulation of DDAH1 as a Potential Therapeutic Target for Treating Cardiovascular Diseases. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-6.	0.5	10
18	Microtubule Actin Cross-Linking Factor 1 Regulates Cardiomyocyte Microtubule Distribution and Adaptation to Hemodynamic Overload. PLoS ONE, 2013, 8, e73887.	1.1	41

#	Article	IF	Citations
19	DDAH1 Deficiency Attenuates Endothelial Cell Cycle Progression and Angiogenesis. PLoS ONE, 2013, 8, e79444.	1.1	26
20	Disruption of mindin exacerbates cardiac hypertrophy and fibrosis. Journal of Molecular Medicine, 2012, 90, 895-910.	1.7	26
21	AMP Activated Protein Kinase-α2 Regulates Expression of Estrogen-Related Receptor-α, a Metabolic Transcription Factor Related to Heart Failure Development. Hypertension, 2011, 58, 696-703.	1.3	76
22	Exacerbated Pulmonary Arterial Hypertension and Right Ventricular Hypertrophy in Animals With Loss of Function of Extracellular Superoxide Dismutase. Hypertension, 2011, 58, 303-309.	1.3	71
23	Dimethylarginine Dimethylaminohydrolase-1 Is the Critical Enzyme for Degrading the Cardiovascular Risk Factor Asymmetrical Dimethylarginine. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1540-1546.	1.1	119
24	Cardiac-specific mindin overexpression attenuates cardiac hypertrophy via blocking AKT/GSK3β and TGF-β1–Smad signalling. Cardiovascular Research, 2011, 92, 85-94.	1.8	81
25	Adenosine kinase regulation of cardiomyocyte hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1722-H1732.	1.5	16
26	Oxidative Stress Regulates Left Ventricular PDE5 Expression in the Failing Heart. Circulation, 2010, 121, 1474-1483.	1.6	149
27	PGC-1α Regulates Expression of Myocardial Mitochondrial Antioxidants and Myocardial Oxidative Stress After Chronic Systolic Overload. Antioxidants and Redox Signaling, 2010, 13, 1011-1022.	2.5	186
28	Adenosine regulation of microtubule dynamics in cardiac hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H523-H532.	1.5	27
29	Adenosine A ₃ Receptor Deficiency Exerts Unanticipated Protective Effects on the Pressure-Overloaded Left Ventricle. Circulation, 2008, 118, 1713-1721.	1.6	41
30	Ecto-5′-Nucleotidase Deficiency Exacerbates Pressure-Overload–Induced Left Ventricular Hypertrophy and Dysfunction. Hypertension, 2008, 51, 1557-1564.	1.3	39
31	Disruption of Sarcolemmal ATP-Sensitive Potassium Channel Activity Impairs the Cardiac Response to Systolic Overload. Circulation Research, 2008, 103, 1009-1017.	2.0	43
32	AMP Activated Protein Kinase-α2 Deficiency Exacerbates Pressure-Overload–Induced Left Ventricular Hypertrophy and Dysfunction in Mice. Hypertension, 2008, 52, 918-924.	1.3	165
33	Extracellular Superoxide Dismutase Deficiency Exacerbates Pressure Overload–Induced Left Ventricular Hypertrophy and Dysfunction. Hypertension, 2008, 51, 19-25.	1.3	91
34	Type I Collagen Structure Regulates Cell Morphology and EGF Signaling in Primary Rat Hepatocytes through cAMP-dependent Protein Kinase A. Molecular Biology of the Cell, 2006, 17, 345-356.	0.9	69
35	Regulation of Hepatocyte Cell Cycle Progression and Differentiation by Type I Collagen Structure. Current Topics in Developmental Biology, 2005, 72, 205-236.	1.0	63
36	The Role of Collagen Structure in Mitogen Stimulation of ERK, Cyclin D1 Expression, and G1-S Progression in Rat Hepatocytes. Journal of Biological Chemistry, 2003, 278, 31691-31700.	1.6	45

JOHN T FASSETT

#	Article	IF	CITATIONS
37	Differential regulation of cyclins D1 and D3 in hepatocyte proliferation. Hepatology, 2002, 36, 30-38.	3.6	104
38	Mrp3, a Mitogen-Regulated Protein/Proliferin Gene Expressed in Wound Healing and in Hair Follicles. , 0, .		14