Ted Maddess

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/9379499/publications.pdf
Version: 2024-02-01

Re: inter-optometrist variability of IOP measurement for modern tonometers and their agreement with
Goldmann Applanation Tonometry. Australasian journal of optometry, The, 2022, 105, 346-346.

Response characteristics of objective perimetry in persons living with epilepsy. Journal of the Neurological Sciences, 2022, 436, 120237.

Rural-urban differences in myopia prevalence among myopes presenting to Bhutanese retinal clinical
3 services: a 3-year national study. Graefe's Archive for Clinical and Experimental Ophthalmology, 2021,
$1.9 \quad 12$ 259, 613-621.

4 Assessing migraine patients with multifocal pupillographic objective perimetry. BMC Neurology, 2021, 21, 211.

Relationships between retinal structure and function and vision-related quality of life measures in
5 advanced age-related macular degeneration. Graefe's Archive for Clinical and Experimental
1.93

Ophthalmology, 2021, 259, 3687-3696.
6 Topical chloramphenicol usage in Australia preâ€•and postâ€rescheduling as a nonâ€prescription medication. Clinical and Experimental Ophthalmology, 2021, 49, 762-765.
2.6

Recovery dynamics of multifocal pupillographic objective perimetry from tropicamide dilation.
$7 \quad$ Graefe's Archive for Clinical and Experimental Ophthalmology, 2020, 258, 191-200.

8 Retinal laser services in Bhutan: a 3-year national survey. BMC Ophthalmology, 2020, 20, 404.
1.4

Insights for mVVEPs from perimetry using large spatial frequency-doubling and near
frequency-doubling stimuli in glaucoma. Documenta Ophthalmologica, 2020, 141, 45-55
2.2

0

10 Novel morphometric analysis of higher order structure of human radial peri-papillary capillaries:
relevance to retinal perfusion efficiency and age. Scientific Reports, 2019, 9, 13464.
3.3

5
11 Retinotopic effects of visual attention revealed by dichoptic multifocal pupillography. Scientific
Reports, 2018, 8, 2991.

Improving face identity perception in age-related macular degeneration via caricaturing. Scientific
12 Reports, 2018, 8, 15205.
3.3

11

13 Multiple sclerosis seen through new eyes. Clinical and Experimental Ophthalmology, 2017, 45, 9-11.
$2.6 \quad 5$

14 Modeling the relative influence of fixation and sampling errors on retest variability in perimetry. Graefe's Archive for Clinical and Experimental Ophthalmology, 2014, 252, 1611-1619.
1.9

21

Visual evoked potential and psychophysical contrast thresholds in glaucoma. Documenta Ophthalmologica, 2014, 128, 111-120.

Highâ€•versus lowâ€density multifocal pupillographic objective perimetry in glaucoma. Clinical and Experimental Ophthalmology, 2013, 41, 140-147.

17 Contrast-response functions of the multifocal steady-state VEP (MSV). Clinical Neurophysiology, 2012,
123, 1865-1871.
1.5

19 Discrimination of complex form by simple oscillator networks. Network: Computation in Neural
Systems, 2009, 20, 233-252.

Multifocal pupillographic visual field testing in glaucoma. Clinical and Experimental Ophthalmology, 2009, 37, 678-686.

Multifocal frequency-doubling pattern visual evoked responses to dichoptic stimulation. Clinical
Neurophysiology, 2009, 120, 2100-2108.

Multilevel isotrigon textures. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2007, 24, 278.

Frequency doubling illusion VEPs and automated perimetry in multiple sclerosis. Documenta
Ophthalmologica, 2006, 113, 29-41.

Hierarchical decomposition of dichoptic multifocal visual evoked potentials. Visual Neuroscience,
2006, 23, 703-712.

Effect of temporal sparseness and dichoptic presentation on multifocal visual evoked potentials.
Visual Neuroscience, 2005, 22, 45-54.
1.0

Contrast response of temporally sparse dichoptic multifocal visual evoked potentials. Visual
Neuroscience, 2005, 22, 153-162.

Correspondence. Blue-yellow deficits in diabetes. Clinical and Experimental Ophthalmology, 2004, 32,
556-556.

Binary and ternary textures containing higher-order spatial correlations. Vision Research, 2004, 44, 1093-1113.

29 Lessons from biological processing of image texture. International Congress Series, 2004, 1269, 26-29.
0.2

Definition and Evaluation of the Spatio-Temporal Variations in Chlorophyll Fluorescence during the
30 Phases of CAM and during Endogenous Rhythms in Continuous Light, in Thick Leaves ofKalancho $\tilde{A}_{\text {« }}$ daigremontiana. Plant Biology, 2002, 4, 446-455.

31 Discriminating of isotrigon textures. Vision Research, 2001, 41, 3837-3860.
1.4

18

32 Comparison of three tests using the frequency doubling illusion to diagnose glaucoma. Clinical and Experimental Ophthalmology, 2001, 29, 359-367.
2.6

7

Employing following eye movements to discriminate normal from glaucoma subjects. Clinical and Experimental Ophthalmology, 2000, 28, 172-174.

Perspectives on the use of frequency doubling and short wavelength perimetry for the diagnosis of glaucoma. Clinical and Experimental Ophthalmology, 2000, 28, 245-247.

Spectral sensitivity of photoreceptors in an Australian marsupial, the tammar wallaby (Macropus) Tj ETQq1 $10.7843_{1.4} \mathrm{rgBT}_{25} \mathrm{Zverloc}$

45	Evidence for spatial aliasing effects in the Y-like cells of the magnocellular visual pathway. Vision Research, 1998, 38, 1843-1859.	1.4	58
46	Correlations between observability of the spatial frequency doubled illusion and a multiâeregion pattern electroretinogram. Australian and New Zealand Journal of Ophthalmology, 1997, 25, 91-93.	0.4	18
47	A multipleâ€frequency, multipleâ€region pattern electroretinogram investigation of nonâ€linear retinal signals. Australian and New Zealand Journal of Ophthalmology, 1997, 25, 94-97.	0.4	11
48	Orientation-sensitive Neurons in the Brain of the Honey Bee (Apis mellifera). Journal of Insect Physiology, 1997, 43, 329-336.	2.0	65
49	A system of insect neurons sensitive to horizontal and vertical image motion connects the medulla and midbrain. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1991, 169, 355.	1.6	23

