
Yvan Arsenijevic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/937943/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Facile isolation and the characterization of human retinal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15772-15777.	7.1	390
2	<i>Ink4a</i> and <i>Arf</i> differentially affect cell proliferation and neural stem cell self-renewal in <i>Bmi1</i> -deficient mice. Genes and Development, 2005, 19, 1438-1443.	5.9	300
3	Isolation of Multipotent Neural Precursors Residing in the Cortex of the Adult Human Brain. Experimental Neurology, 2001, 170, 48-62.	4.1	274
4	Bmi1 Loss Produces an Increase in Astroglial Cells and a Decrease in Neural Stem Cell Population and Proliferation. Journal of Neuroscience, 2005, 25, 5774-5783.	3.6	112
5	ROCK Inhibitor Enhances Adhesion and Wound Healing of Human Corneal Endothelial Cells. PLoS ONE, 2013, 8, e62095.	2.5	111
6	Gene Transfer with AAV9-PHP.B Rescues Hearing in a Mouse Model of Usher Syndrome 3A and Transduces Hair Cells in a Non-human Primate. Molecular Therapy - Methods and Clinical Development, 2019, 13, 1-13.	4.1	110
7	Delivery of Ciliary Neurotrophic Factor via Lentiviral-Mediated Transfer Protects Axotomized Retinal Ganglion Cells for an Extended Period of Time. Human Gene Therapy, 2003, 14, 103-115.	2.7	101
8	Lentiviral Gene Transfer of Rpe65 Rescues Survival and Function of Cones in a Mouse Model of Leber Congenital Amaurosis. PLoS Medicine, 2006, 3, e347.	8.4	100
9	Derivation of Traceable and Transplantable Photoreceptors from Mouse Embryonic Stem Cells. Stem Cell Reports, 2014, 2, 853-865.	4.8	99
10	Retinal Stem Cells Transplanted into Models of Late Stages of Retinitis Pigmentosa Preferentially Adopt a Glial or a Retinal Ganglion Cell Fate. , 2007, 48, 446.		98
11	Differentiation and Transplantation of Embryonic Stem Cell-Derived Cone Photoreceptors into a Mouse Model of End-Stage Retinal Degeneration. Stem Cell Reports, 2017, 8, 1659-1674.	4.8	82
12	Nonsense Mutations in FAM161A Cause RP28-Associated Recessive Retinitis Pigmentosa. American Journal of Human Genetics, 2010, 87, 376-381.	6.2	76
13	Caveolin-1 opens endothelial cell junctions by targeting catenins. Cardiovascular Research, 2012, 93, 130-140.	3.8	76
14	Pharmacological disruption of the Notch transcription factor complex. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16292-16301.	7.1	64
15	Cone Genesis Tracing by the Chrnb4-EGFP Mouse Line: Evidences of Cellular Material Fusion after Cone Precursor Transplantation. Molecular Therapy, 2017, 25, 634-653.	8.2	56
16	FAM161A, associated with retinitis pigmentosa, is a component of the cilia-basal body complex and interacts with proteins involved in ciliopathies. Human Molecular Genetics, 2012, 21, 5174-5184.	2.9	51
17	Animal modelling for inherited central vision loss. Journal of Pathology, 2016, 238, 300-310.	4.5	50
18	Reduction of choroidal neovascularization in mice by adenoâ€associated virusâ€delivered antiâ€vascular endothelial growth factor short hairpin RNA. Journal of Gene Medicine, 2012, 14, 632-641.	2.8	48

YVAN ARSENIJEVIC

#	Article	IF	CITATIONS
19	In conditions of limited chromophore supply rods entrap 11-cis-retinal leading to loss of cone function and cell death. Human Molecular Genetics, 2009, 18, 1266-1275.	2.9	47
20	Olaparib significantly delays photoreceptor loss in a model for hereditary retinal degeneration. Scientific Reports, 2016, 6, 39537.	3.3	45
21	Mutations in CEP78 Cause Cone-Rod Dystrophy and Hearing Loss Associated with Primary-Cilia Defects. American Journal of Human Genetics, 2016, 99, 770-776.	6.2	44
22	Epidermal Growth Factor Is a Neuronal Differentiation Factor for Retinal Stem Cells In Vitro. Stem Cells, 2006, 24, 696-706.	3.2	43
23	Multigenic lentiviral vectors for combined and tissue-specific expression of miRNA- and protein-based antiangiogenic factors. Molecular Therapy - Methods and Clinical Development, 2015, 2, 14064.	4.1	43
24	CFH exerts anti-oxidant effects on retinal pigment epithelial cells independently from protecting against membrane attack complex. Scientific Reports, 2019, 9, 13873.	3.3	43
25	High Yield of Cells Committed to the Photoreceptor Fate from Expanded Mouse Retinal Stem Cells. Stem Cells, 2006, 24, 2060-2070.	3.2	42
26	Towards therapeutic application of ocular stem cells. Seminars in Cell and Developmental Biology, 2007, 18, 805-818.	5.0	41
27	HDAC inhibition in the <i>cpfl1</i> mouse protects degenerating cone photoreceptors <i>in vivo</i> . Human Molecular Genetics, 2016, 25, ddw275.	2.9	39
28	Retinal stem cells: promising candidates for retina transplantation. Cell and Tissue Research, 2008, 331, 347-357.	2.9	36
29	ROCK-1 mediates diabetes-induced retinal pigment epithelial and endothelial cell blebbing: Contribution to diabetic retinopathy. Scientific Reports, 2017, 7, 8834.	3.3	36
30	Determination of Rod and Cone Influence to the Early and Late Dynamic of the Pupillary Light Response. , 2016, 57, 2501.		34
31	Nephropathy in Pparg-null mice highlights PPARÎ ³ systemic activities in metabolism and in the immune system. PLoS ONE, 2017, 12, e0171474.	2.5	34
32	Retinal degeneration depends on Bmi1 function and reactivation of cell cycle proteins. Proceedings of the United States of America, 2013, 110, E593-601.	7.1	32
33	The connecting cilium inner scaffold provides a structural foundation that protects against retinal degeneration. PLoS Biology, 2022, 20, e3001649.	5.6	32
34	<i>Adamts18</i> deletion results in distinct developmental defects and provides a model for congenital disorders of lens, lung, and female reproductive tract development. Biology Open, 2016, 5, 1585-1594.	1.2	31
35	Phenotype of three consanguineous Tunisian families with early-onset retinal degeneration caused by an R91W homozygous mutation in the RPE65 gene. Graefe's Archive for Clinical and Experimental Ophthalmology, 2006, 244, 1104-1112.	1.9	30
36	Nkx2.1 regulates the generation of telencephalic astrocytes during embryonic development. Scientific Reports, 2017, 7, 43093.	3.3	30

YVAN ARSENIJEVIC

#	Article	IF	CITATIONS
37	Gene Therapy Regenerates Protein Expression in Cone Photoreceptors in Rpe65R91W/R91W Mice. PLoS ONE, 2011, 6, e16588.	2.5	26
38	CNS regeneration: A morphogen's tale. Journal of Neurobiology, 2005, 64, 491-507.	3.6	24
39	Retinal Degeneration Progression Changes Lentiviral Vector Cell Targeting in the Retina. PLoS ONE, 2011, 6, e23782.	2.5	23
40	Evaluation of tolerance to lentiviral LV-RPE65 gene therapy vector after subretinal delivery in non-human primates. Translational Research, 2017, 188, 40-57.e4.	5.0	21
41	Non-neural Regions of the Adult Human Eye: A Potential Source of Neurons?. , 2003, 44, 799.		20
42	Interactome analysis reveals that FAM161A, deficient in recessive retinitis pigmentosa, is a component of the Golgi-centrosomal network. Human Molecular Genetics, 2015, 24, 3359-3371.	2.9	19
43	A new mouse model for retinal degeneration due to Fam161a deficiency. Scientific Reports, 2021, 11, 2030.	3.3	17
44	Rapid Cohort Generation and Analysis of Disease Spectrum of Large Animal Model of Cone Dystrophy. PLoS ONE, 2013, 8, e71363.	2.5	17
45	The Fetal Hypothalamus Has the Potential to Generate Cells with a Gonadotropin Releasing Hormone (GnRH) Phenotype. PLoS ONE, 2009, 4, e4392.	2.5	16
46	Mammalian Neural Stem-Cell Renewal: Nature versus Nurture. Molecular Neurobiology, 2003, 27, 73-98.	4.0	14
47	Chromosomal Number Aberrations and Transformation in Adult Mouse Retinal Stem Cells In Vitro. , 2009, 50, 5975.		14
48	Rai1 frees mice from the repression of active wake behaviors by light. ELife, 2017, 6, .	6.0	14
49	Remaining Rod Activity Mediates Visual Behavior in AdultRpe65â^'/â^'mice , 2010, 51, 6835.		13
50	Generation of cells committed towards the photoreceptor fate for retinal transplantation. NeuroReport, 2007, 18, 851-855.	1.2	12
51	Pathogenic Effects of Mineralocorticoid Pathway Activation in Retinal Pigment Epithelium. International Journal of Molecular Sciences, 2021, 22, 9618.	4.1	11
52	Amyloid Precursor-Like Protein 2 deletion-induced retinal synaptopathy related to congenital stationary night blindness: structural, functional and molecular characteristics. Molecular Brain, 2016, 9, 64.	2.6	9
53	Lentiviral Gene Transfer-Mediated Cone Vision Restoration in RPE65 Knockout Mice. Advances in Experimental Medicine and Biology, 2008, 613, 89-95.	1.6	8
54	Cell Cycle Proteins and Retinal Degeneration: Evidences of New Potential Therapeutic Targets. Advances in Experimental Medicine and Biology, 2016, 854, 371-377.	1.6	6

#	Article	IF	CITATIONS
55	An in vitro Model of Human Retinal Detachment Reveals Successive Death Pathway Activations. Frontiers in Neuroscience, 2020, 14, 571293.	2.8	6
56	Notch signaling in the pigmented epithelium of the anterior eye segment promotes ciliary body development at the expense of iris formation. Pigment Cell and Melanoma Research, 2014, 27, 580-589.	3.3	5
57	Lentiviral mediated RPE65 gene transfer in healthy hiPSCs-derived retinal pigment epithelial cells markedly increased RPE65 mRNA, but modestly protein level. Scientific Reports, 2020, 10, 8890.	3.3	5
58	Enhancer of Zeste Homolog 2 (EZH2) Contributes to Rod Photoreceptor Death Process in Several Forms of Retinal Degeneration and Its Activity Can Serve as a Biomarker for Therapy Efficacy. International Journal of Molecular Sciences, 2021, 22, 9331.	4.1	5
59	Construction and Quantitative Evaluation of a Dual Specific Promoter System for Monitoring the Expression Status of Stra8 and c-kit Genes. Molecular Biotechnology, 2014, 56, 1100-1109.	2.4	2
60	The Evaluation of BMI1 Posttranslational Modifications During Retinal Degeneration to Understand BMI1 Action on Photoreceptor Death Execution. Advances in Experimental Medicine and Biology, 2018, 1074, 359-365.	1.6	1