Gaurav Jha

List of Publications by Citations

Source: https://exaly.com/author-pdf/9378968/gaurav-jha-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

13
papers509
citations8
h-index13
g-index13
ext. papers737
ext. citations8.6
avg, IF3.82
L-index

#	Paper	IF	Citations
13	Electrode Degradation in Lithium-Ion Batteries. ACS Nano, 2020, 14, 1243-1295	16.7	209
12	Accelerating Palladium Nanowire H Sensors Using Engineered Nanofiltration. ACS Nano, 2017, 11, 9276	5-9885	123
11	Hollow Pd-Ag Composite Nanowires for Fast Responding and Transparent Hydrogen Sensors. <i>ACS Applied Materials & Discrete Sensors</i> , 2017, 9, 39464-39474	9.5	58
10	Hierarchical Metal-Organic Framework-Assembled Membrane Filter for Efficient Removal of Particulate Matter. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 19957-19963	9.5	52
9	Fluoride ion sensing in aqueous medium by employing nitrobenzoxadiazole-postgrafted mesoporous silica nanoparticles (MCM-41). <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 3525-33	3.6	26
8	Electrophoretic Deposition of Mesoporous Niobium(V)Oxide Nanoscopic Films. <i>Chemistry of Materials</i> , 2018 , 30, 6549-6558	9.6	11
7	Collateral Advantages of a Gel Electrolyte for MnO2 Nanowire Capacitors: Higher Voltage and Reduced Volume. <i>ACS Energy Letters</i> , 2017 , 2, 1162-1169	20.1	9
6	Combined photophysical, NMR and theoretical (DFT) study on the interaction of a multi component system in the absence and presence of different biologically and environmentally important ions. <i>RSC Advances</i> , 2015 , 5, 61258-61269	3.7	8
5	Synthesis, Photophysical Studies on Some AnthraceneBased Ionic Liquids and their Application as Biofilm Formation Inhibitor. <i>ChemistrySelect</i> , 2017 , 2, 2426-2432	1.8	6
4	Investigating the Degradation of Nb2O5 Thin Films Across 10,000 Lithiation/Delithiation Cycles. <i>ACS Applied Energy Materials</i> , 2021 , 4, 6542-6552	6.1	3
3	Rapid, Wet Chemical Fabrication of Radial Junction Electroluminescent Wires. <i>ACS Applied Materials</i> & amp; Interfaces, 2018 , 10, 35344-35353	9.5	2
2	Supercharging a MnO Nanowire: An Amine-Altered Morphology Retains Capacity at High Rates and Mass Loadings. <i>Langmuir</i> , 2017 , 33, 9324-9332	4	1
1	Free-radical sensing by using naphthalimide based mesoporous silica (MCM-41) nanoparticles: A combined fluorescence and cellular imaging study. <i>Chemical Physics Letters</i> , 2018 , 692, 324-332	2.5	1