Alessandra Alves de Souza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9378778/publications.pdf

Version: 2024-02-01

77 papers

2,334 citations

218677 26 h-index 233421 45 g-index

84 all docs

84 docs citations

times ranked

84

3007 citing authors

#	Article	IF	CITATIONS
1	The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution. Journal of Colloid and Interface Science, 2011, 359, 289-295.	9.4	171
2	The Genome Sequence of the Gram-Positive Sugarcane Pathogen Leifsonia xyli subsp. xyli. Molecular Plant-Microbe Interactions, 2004, 17, 827-836.	2.6	119
3	Citrus genomics. Tree Genetics and Genomes, 2012, 8, 611-626.	1.6	104
4	Differentiation of Strains of Xylella fastidiosa by a Variable Number of Tandem Repeat Analysis. Applied and Environmental Microbiology, 2001, 67, 4091-4095.	3.1	97
5	Persistence in Phytopathogenic Bacteria: Do We Know Enough?. Frontiers in Microbiology, 2018, 9, 1099.	3 . 5	92
6	Development of a Molecular Tool for the Diagnosis of Leprosis, a Major Threat to Citrus Production in the Americas. Plant Disease, 2003, 87, 1317-1321.	1.4	87
7	Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation. Scientific Reports, 2015, 5, 9856.	3.3	85
8	Microarray Analyses of Xylella fastidiosa Provide Evidence of Coordinated Transcription Control of Laterally Transferred Elements. Genome Research, 2003, 13, 570-578.	5 . 5	79
9	Gene expression profile of the plant pathogen Xylella fastidiosa during biofilm formation in vitro. FEMS Microbiology Letters, 2004, 237, 341-353.	1.8	75
10	Analysis of Gene Expression in Two Growth States of Xylella fastidiosa and Its Relationship with Pathogenicity. Molecular Plant-Microbe Interactions, 2003, 16, 867-875.	2.6	69
11	Nanowire Arrays as Cell Force Sensors To Investigate Adhesin-Enhanced Holdfast of Single Cell Bacteria and Biofilm Stability. Nano Letters, 2016, 16, 4656-4664.	9.1	65
12	RNA-Seq analysis of Citrus reticulata in the early stages of Xylella fastidiosa infection reveals auxin-related genes as a defense response. BMC Genomics, 2013, 14, 676.	2.8	59
13	Quantification and localization of hesperidin and rutin in Citrus sinensis grafted on C. limonia after Xylella fastidiosa infection by HPLC-UV and MALDI imaging mass spectrometry. Phytochemistry, 2015, 115, 161-170.	2.9	57
14	N-Acetylcysteine in Agriculture, a Novel Use for an Old Molecule: Focus on Controlling the Plant–Pathogen Xylella fastidiosa. PLoS ONE, 2013, 8, e72937.	2.5	57
15	Global Expression Profile of Biofilm Resistance to Antimicrobial Compounds in the Plant-Pathogenic Bacterium Xylella fastidiosa Reveals Evidence of Persister Cells. Journal of Bacteriology, 2012, 194, 4561-4569.	2.2	53
16	Copper resistance of biofilm cells of the plant pathogen Xylella fastidiosa. Applied Microbiology and Biotechnology, 2008, 77, 1145-1157.	3.6	52
17	PAMPs, PRRs, effectors and R-genes associated with citrus–pathogen interactions. Annals of Botany, 2017, 119, mcw238.	2.9	48
18	Surface Physicochemical Properties at the Micro and Nano Length Scales: Role on Bacterial Adhesion and Xylella fastidiosa Biofilm Development. PLoS ONE, 2013, 8, e75247.	2.5	47

#	Article	IF	CITATIONS
19	The MqsRA Toxin-Antitoxin System from Xylella fastidiosa Plays a Key Role in Bacterial Fitness, Pathogenicity, and Persister Cell Formation. Frontiers in Microbiology, 2016, 7, 904.	3.5	47
20	Nanofilms of hyaluronan/chitosan assembled layer-by-layer: An antibacterial surface for Xylella fastidiosa. Carbohydrate Polymers, 2016, 136, 1-11.	10.2	46
21	Chemical Characterization of <i>Citrus sinensis</i> Grafted on <i>C. limonia</i> and the Effect of Some Isolated Compounds on the Growth of <i>Xylella fastidiosa</i> Journal of Agricultural and Food Chemistry, 2008, 56, 7815-7822.	5.2	44
22	Expression of Pathogenicity-Related Genes of Xylella fastidiosa In Vitro and In Planta. Current Microbiology, 2005, 50, 223-228.	2.2	43
23	Transcriptional profile of sweet orange in response to chitosan and salicylic acid. BMC Genomics, 2015, 16, 288.	2.8	40
24	Citrus Variegated Chlorosis: an Overview of 30ÂYears of Research and Disease Management. Tropical Plant Pathology, 2020, 45, 175-191.	1.5	40
25	The ATP-dependent RNA helicase HrpB plays an important role in motility and biofilm formation in Xanthomonas citri subsp. citri. BMC Microbiology, 2016, 16, 55.	3.3	36
26	LRR-RLK family from two Citrus species: genome-wide identification and evolutionary aspects. BMC Genomics, 2016, 17, 623.	2.8	35
27	Xanthomonas citri subsp. citri: host interaction and control strategies. Tropical Plant Pathology, 2020, 45, 213-236.	1.5	28
28	Type II Toxin-Antitoxin Distribution and Adaptive Aspects on Xanthomonas Genomes: Focus on Xanthomonas citri. Frontiers in Microbiology, 2016, 7, 652.	3.5	27
29	Citrus biotechnology: What has been done to improve disease resistance in such an important crop?. Biotechnology Research and Innovation, 2019, 3, 95-109.	0.9	26
30	The <i>Arabidopsis</i> immune receptor EFR increases resistance to the bacterial pathogens <i>Xanthomonas</i> and <i>Xylella</i> in transgenic sweet orange. Plant Biotechnology Journal, 2021, 19, 1294-1296.	8.3	26
31	Comparative genomic characterization of citrus-associated Xylella fastidiosa strains. BMC Genomics, 2007, 8, 474.	2.8	25
32	Analysis of the biofilm proteome of Xylella fastidiosa. Proteome Science, 2011, 9, 58.	1.7	25
33	On the role of extracellular polymeric substances during early stages of Xylella fastidiosa biofilm formation. Colloids and Surfaces B: Biointerfaces, 2013, 102, 519-525.	5.0	24
34	BigR is a sulfide sensor that regulates a sulfur transferase/dioxygenase required for aerobic respiration of plant bacteria under sulfide stress. Scientific Reports, 2018, 8, 3508.	3.3	24
35	Phenotype Overlap in Xylella fastidiosa Is Controlled by the Cyclic Di-GMP Phosphodiesterase Eal in Response to Antibiotic Exposure and Diffusible Signal Factor-Mediated Cell-Cell Signaling. Applied and Environmental Microbiology, 2013, 79, 3444-3454.	3.1	22
36	Wide-ranging transcriptomic analysis of Poncirus trifoliata, Citrus sunki, Citrus sinensis and contrasting hybrids reveals HLB tolerance mechanisms. Scientific Reports, 2020, 10, 20865.	3.3	22

#	Article	IF	Citations
37	Competitive hybridization on spotted microarrays as a tool to conduct comparative genomic analyses of Xylella fastidiosastrains. FEMS Microbiology Letters, 2002, 216, 15-21.	1.8	21
38	Highly-sensitive and label-free indium phosphide biosensor for early phytopathogen diagnosis. Biosensors and Bioelectronics, 2012, 36, 62-68.	10.1	21
39	The Antitoxin Protein of a Toxin-Antitoxin System from Xylella fastidiosa Is Secreted via Outer Membrane Vesicles. Frontiers in Microbiology, 2016, 7, 2030.	3.5	20
40	Comparative analysis of differentially expressed sequence tags of sweet orange and mandarin infected with Xylella fastidiosa. Genetics and Molecular Biology, 2007, 30, 965-971.	1.3	19
41	Differential expression of genes identified from Poncirus trifoliata tissue inoculated with CTV through EST analysis and in silico hybridization. Genetics and Molecular Biology, 2007, 30, 972-979.	1.3	19
42	In vitro Determination of Extracellular Proteins from Xylella fastidiosa. Frontiers in Microbiology, 2016, 7, 2090.	3.5	15
43	Phenotypic Characterization and Transformation Attempts Reveal Peculiar Traits of Xylella fastidiosa Subspecies pauca Strain De Donno. Microorganisms, 2020, 8, 1832.	3.6	13
44	Draft Genome Sequence of 11399, a Transformable Citrus-Pathogenic Strain of Xylella fastidiosa. Genome Announcements, 2016, 4, .	0.8	12
45	Xylella fastidiosa subsp. pauca and fastidiosa Colonize Arabidopsis Systemically and Induce Anthocyanin Accumulation in Infected Leaves. Phytopathology, 2019, 109, 225-232.	2.2	12
46	Analysis of expressed sequence tags from Citrus sinensis L. Osbeck infected with Xylella fastidiosa. Genetics and Molecular Biology, 2007, 30, 957-964.	1.3	11
47	Stiffness signatures along early stages of Xylella fastidiosa biofilm formation. Colloids and Surfaces B: Biointerfaces, 2017, 159, 174-182.	5.0	11
48	A Simple Defined Medium for the Production of True Diketopiperazines in Xylella fastidiosa and Their Identification by Ultra-Fast Liquid Chromatography-Electrospray Ionization Ion Trap Mass Spectrometry. Molecules, 2017, 22, 985.	3.8	11
49	Analysis of Defense-Related Gene Expression in Citrus Hybrids Infected by <i>Xylella fastidiosa</i> Phytopathology, 2019, 109, 301-306.	2.2	11
50	The <i>ecnA</i> Antitoxin Is Important Not Only for Human Pathogens: Evidence of Its Role in the Plant Pathogen <i>Xanthomonas citri</i> subsp. <i>citri</i> Journal of Bacteriology, 2019, 201, .	2.2	10
51	CitEST libraries. Genetics and Molecular Biology, 2007, 30, 1019-1023.	1.3	9
52	Comparative genomic analysis of coffee-infecting Xylella fastidiosa strains isolated from Brazil. Microbiology (United Kingdom), 2015, 161, 1018-1033.	1.8	9
53	Assessment of the diagnostic potential of Immmunocapture-PCR and Immuno-PCR for Citrus Variegated Chlorosis. Journal of Microbiological Methods, 2008, 75, 302-307.	1.6	8
54	VapD in Xylella fastidiosa Is a Thermostable Protein with Ribonuclease Activity. PLoS ONE, 2015, 10, e0145765.	2.5	8

#	Article	IF	CITATIONS
55	Severity assessment in the Nicotiana tabacum-Xylella fastidiosa subsp. pauca pathosystem: design and interlaboratory validation of a standard area diagram set. Tropical Plant Pathology, 2020, 45, 710-722.	1.5	8
56	Persister Cells Form in the Plant Pathogen Xanthomonas citri subsp. citri under Different Stress Conditions. Microorganisms, 2021, 9, 384.	3.6	8
57	Modified Monosaccharides Content of Xanthan Gum Impairs Citrus Canker Disease by Affecting the Epiphytic Lifestyle of Xanthomonas citri subsp. citri. Microorganisms, 2021, 9, 1176.	3.6	8
58	Copper Kills Escherichia coli Persister Cells. Antibiotics, 2020, 9, 506.	3.7	7
59	Probing the application of OmpA-derived peptides to disrupt the acquisition of  Candidatus Liberibacter asiaticus' by Diaphorina citri. Phytopathology, 2021, , .	2.2	7
60	PHLOEM PROMOTERS IN TRANSGENIC SWEET ORANGE ARE DIFFERENTIALLY TRIGGERED BY Candidatus Liberibacter asiaticus. Revista Brasileira De Fruticultura, 2017, 39, .	0.5	6
61	Controlled spatial organization of bacterial growth reveals key role of cell filamentation preceding Xylella fastidiosa biofilm formation. Npj Biofilms and Microbiomes, 2021, 7, 86.	6.4	6
62	Identification of defence-related genes expressed in coffee and citrus during infection by Xylella fastidiosa. European Journal of Plant Pathology, 2011, 130, 529-540.	1.7	5
63	Overexpression of Citrus reticulata SAMT in Nicotiana tabacum increases MeSA volatilization and decreases Xylella fastidiosa symptoms. Planta, 2020, 252, 103.	3.2	5
64	Octahedral ruthenium and magnesium naringenin 5-alkoxide complexes: NMR analysis of diastereoisomers and in-vivo antibacterial activity against Xylella fastidiosa. Talanta, 2021, 225, 122040.	5.5	5
65	MqsR toxin as a biotechnological tool for plant pathogen bacterial control. Scientific Reports, 2022, 12, 2794.	3.3	5
66	XadA2 Adhesin Decreases Biofilm Formation and Transmission of Xylella fastidiosa subsp. pauca. Insects, 2020, 11, 473.	2.2	3
67	High-Quality Draft Genome Sequence Resources of Eight Xylella fastidiosa Strains Isolated from Citrus, Coffee, Plum, and Hibiscus in South America. Phytopathology, 2020, 110, 1751-1755.	2.2	3
68	GC-TOF/MS-based metabolomics analysis to investigate the changes driven by N-Acetylcysteine in the plant-pathogen Xanthomonas citri subsp. citri. Scientific Reports, 2021, 11, 15558.	3.3	3
69	Overexpression of mqsR in Xylella fastidiosa Leads to a Priming Effect of Cells to Copper Stress Tolerance. Frontiers in Microbiology, 2021, 12, 712564.	3.5	3
70	<i>Citrus reticulata</i> CrRAP2.2 Transcriptional Factor Shares Similar Functions to the <i>Arabidopsis</i> Homolog and Increases Resistance to <i>Xylella fastidiosa</i> Molecular Plant-Microbe Interactions, 2020, 33, 519-527.	2.6	2
71	Overexpression of CsSAMT in Citrus sinensis Induces Defense Response and Increases Resistance to Xanthomonas citri subsp. citri. Frontiers in Plant Science, 2022, 13, 836582.	3.6	2
72	Special issue on bacterial citrus diseases: part I. Tropical Plant Pathology, 2020, 45, 163-165.	1.5	1

#	Article	IF	CITATIONS
73	Filamentation and spatiotemporal distribution of extracellular polymeric substances: role on X.fastidiosa single cell adhesion and biofilm formation (Conference Presentation)., 2016,,.		O
74	A force sensor using nanowire arrays to understand biofilm formation (Conference Presentation). , 2016, , .		0
75	Special issue on bacterial citrus diseases: part II. Tropical Plant Pathology, 2020, 45, 557-558.	1.5	O
76	Functionalized microchannels as xylem-mimicking environment: Quantifying X.Âfastidiosa cell adhesion. Biophysical Journal, 2021, 120, 1443-1453.	0.5	0
77	Doenças associadas à Xylella fastidiosa no Brasil. Revisao Anual De Patologia De Plantas, 0, , 50-68.	0.1	O