
James C Paulson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9378635/publications.pdf Version: 2024-02-01

LAMES C PALLISON

#	Article	lF	CITATIONS
1	Siglecs and their roles in the immune system. Nature Reviews Immunology, 2007, 7, 255-266.	10.6	1,642
2	New World Bats Harbor Diverse Influenza A Viruses. PLoS Pathogens, 2013, 9, e1003657.	2.1	1,050
3	Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proceedings of the United States of America, 2004, 101, 17033-17038.	3.3	1,039
4	Structure and Receptor Specificity of the Hemagglutinin from an H5N1 Influenza Virus. Science, 2006, 312, 404-410.	6.0	865
5	Receptor determinants of human and animal influenza virus isolates: Differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology, 1983, 127, 361-373.	1.1	839
6	Siglec-mediated regulation of immune cell function in disease. Nature Reviews Immunology, 2014, 14, 653-666.	10.6	835
7	Symbol Nomenclature for Graphical Representations of Glycans. Glycobiology, 2015, 25, 1323-1324.	1.3	818
8	Receptor Specificity in Human, Avian, and Equine H2 and H3 Influenza Virus Isolates. Virology, 1994, 205, 17-23.	1.1	700
9	Glycan Microarray Analysis of the Hemagglutinins from Modern and Pandemic Influenza Viruses Reveals Different Receptor Specificities. Journal of Molecular Biology, 2006, 355, 1143-1155.	2.0	570
10	Glycomics: an integrated systems approach to structure-function relationships of glycans. Nature Methods, 2005, 2, 817-824.	9.0	421
11	Glycan Microarrays for Decoding the Glycome. Annual Review of Biochemistry, 2011, 80, 797-823.	5.0	395
12	Characterization of H7N9 influenza A viruses isolated from humans. Nature, 2013, 501, 551-555.	13.7	371
13	Sweet spots in functional glycomics. Nature Chemical Biology, 2006, 2, 238-248.	3.9	356
14	Global metabolic inhibitors of sialyl- and fucosyltransferases remodel the glycome. Nature Chemical Biology, 2012, 8, 661-668.	3.9	347
15	Broadly Neutralizing HIV Antibodies Define a Glycan-Dependent Epitope on the Prefusion Conformation of gp41 on Cleaved Envelope Trimers. Immunity, 2014, 40, 657-668.	6.6	342
16	Structural Delineation of a Quaternary, Cleavage-Dependent Epitope at the gp41-gp120 Interface on Intact HIV-1 Env Trimers. Immunity, 2014, 40, 669-680.	6.6	323
17	Glycan microarray technologies: tools to survey host specificity of influenza viruses. Nature Reviews Microbiology, 2006, 4, 857-864.	13.6	319
18	Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120. Nature Structural and Molecular Biology, 2013, 20, 796-803.	3.6	314

#	Article	IF	CITATIONS
19	Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate. Science, 2020, 370, 1089-1094.	6.0	290
20	Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8508-E8517.	3.3	272
21	Homomultimeric complexes of CD22 in B cells revealed by protein-glycan cross-linking. Nature Chemical Biology, 2005, 1, 93-97.	3.9	270
22	Broadly Neutralizing Antibody PGT121 Allosterically Modulates CD4 Binding via Recognition of the HIV-1 gp120 V3 Base and Multiple Surrounding Glycans. PLoS Pathogens, 2013, 9, e1003342.	2.1	267
23	Siglecs as Immune Cell Checkpoints in Disease. Annual Review of Immunology, 2020, 38, 365-395.	9.5	240
24	A Broadly Neutralizing Antibody Targets the Dynamic HIV Envelope Trimer Apex via a Long, Rigidified, and Anionic β-Hairpin Structure. Immunity, 2017, 46, 690-702.	6.6	216
25	Differential sensitivity of human, avian, and equine influenza a viruses to a glycoprotein inhibitor of infection: Selection of receptor specific variants. Virology, 1983, 131, 394-408.	1.1	202
26	Sialoside Specificity of the Siglec Family Assessed Using Novel Multivalent Probes. Journal of Biological Chemistry, 2003, 278, 31007-31019.	1.6	200
27	Recent Avian H5N1 Viruses Exhibit Increased Propensity for Acquiring Human Receptor Specificity. Journal of Molecular Biology, 2008, 381, 1382-1394.	2.0	192
28	Microbial glycan microarrays define key features of host-microbial interactions. Nature Chemical Biology, 2014, 10, 470-476.	3.9	191
29	In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity. Virology, 2012, 422, 105-113.	1.1	189
30	A structural explanation for the low effectiveness of the seasonal influenza H3N2 vaccine. PLoS Pathogens, 2017, 13, e1006682.	2.1	188
31	Contemporary North American influenza H7 viruses possess human receptor specificity: Implications for virus transmissibility. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7558-7563.	3.3	187
32	Antigenic liposomes displaying CD22 ligands induce antigen-specific B cell apoptosis. Journal of Clinical Investigation, 2013, 123, 3074-3083.	3.9	187
33	In vivo targeting of B-cell lymphoma with glycan ligands of CD22. Blood, 2010, 115, 4778-4786.	0.6	182
34	An Atlas of Human Glycosylation Pathways Enables Display of the Human Glycome by Gene Engineered Cells. Molecular Cell, 2019, 75, 394-407.e5.	4.5	181
35	Global site-specific N-glycosylation analysis of HIV envelope glycoprotein. Nature Communications, 2017, 8, 14954.	5.8	176
36	Siglecs as targets for therapy in immune-cell-mediated disease. Trends in Pharmacological Sciences, 2009. 30. 240-248.	4.0	173

#	Article	IF	CITATIONS
37	Negative Regulation of T Cell Receptor Signaling by Siglec-7 (p70/AIRM) and Siglec-9. Journal of Biological Chemistry, 2004, 279, 43117-43125.	1.6	170
38	Siglec-8 as a drugable target to treat eosinophil and mast cell-associated conditions. , 2012, 135, 327-336.		166
39	Recent H3N2 Viruses Have Evolved Specificity for Extended, Branched Human-type Receptors, Conferring Potential for Increased Avidity. Cell Host and Microbe, 2017, 21, 23-34.	5.1	163
40	Structural Evolution of Glycan Recognition by a Family of Potent HIV Antibodies. Cell, 2014, 159, 69-79.	13.5	161
41	Masking of CD22 by cis ligands does not prevent redistribution of CD22 to sites of cell contact. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6104-6109.	3.3	159
42	Structural Characterization of the Hemagglutinin Receptor Specificity from the 2009 H1N1 Influenza Pandemic. Journal of Virology, 2012, 86, 982-990.	1.5	155
43	Functional Balance of the Hemagglutinin and Neuraminidase Activities Accompanies the Emergence of the 2009 H1N1 Influenza Pandemic. Journal of Virology, 2012, 86, 9221-9232.	1.5	155
44	Letters to the Glyco-Forum. Glycobiology, 1996, 6, 647-647.	1.3	152
45	Ablation of CD22 in ligand-deficient mice restores B cell receptor signaling. Nature Immunology, 2006, 7, 199-206.	7.0	149
46	Transcriptional programs of lymphoid tissue capillary and high endothelium reveal control mechanisms for lymphocyte homing. Nature Immunology, 2014, 15, 982-995.	7.0	144
47	High-Affinity Ligand Probes of CD22 Overcome the Threshold Set by <i>cis</i> Ligands to Allow for Binding, Endocytosis, and Killing of B Cells. Journal of Immunology, 2006, 177, 2994-3003.	0.4	140
48	The N2 neuraminidase of human influenza virus has acquired a substrate specificity complementary to the hemagglutinin receptor specificity. Virology, 1991, 180, 10-15.	1.1	135
49	Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor-binding and pH-dependent fusion activities. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1458-1463.	3.3	135
50	Preferential Recognition of Avian-Like Receptors in Human Influenza A H7N9 Viruses. Science, 2013, 342, 1230-1235.	6.0	133
51	Recognition of microbial glycans by human intelectin-1. Nature Structural and Molecular Biology, 2015, 22, 603-610.	3.6	133
52	Differential processing of HIV envelope glycans on the virus and soluble recombinant trimer. Nature Communications, 2018, 9, 3693.	5.8	124
53	Influenza Virus Neuraminidases with Reduced Enzymatic Activity That Avidly Bind Sialic Acid Receptors. Journal of Virology, 2012, 86, 13371-13383.	1.5	121
54	A Highly Pathogenic Avian H7N9 Influenza Virus Isolated from A Human Is Lethal in Some Ferrets Infected via Respiratory Droplets. Cell Host and Microbe, 2017, 22, 615-626.e8.	5.1	121

#	Article	IF	CITATIONS
55	Distinct Endocytic Mechanisms of CD22 (Siglec-2) and Siglec-F Reflect Roles in Cell Signaling and Innate Immunity. Molecular and Cellular Biology, 2007, 27, 5699-5710.	1.1	118
56	The human naive B cell repertoire contains distinct subclasses for a germline-targeting HIV-1 vaccine immunogen. Science Translational Medicine, 2018, 10, .	5.8	113
57	Activation of Murine CD4+ and CD8+ T Lymphocytes Leads to Dramatic Remodeling of <i>N</i> -Linked Glycans. Journal of Immunology, 2006, 177, 2431-2440.	0.4	111
58	Virus recognition of glycan receptors. Current Opinion in Virology, 2019, 34, 117-129.	2.6	104
59	Siglecs as sensors of self in innate and adaptive immune responses. Annals of the New York Academy of Sciences, 2012, 1253, 37-48.	1.8	101
60	Targeted delivery of lipid antigen to macrophages via the CD169/sialoadhesin endocytic pathway induces robust invariant natural killer T cell activation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7826-7831.	3.3	101
61	Kinetic analysis of the influenza A virus HA/NA balance reveals contribution of NA to virus-receptor binding and NA-dependent rolling on receptor-containing surfaces. PLoS Pathogens, 2018, 14, e1007233.	2.1	101
62	Structure, Receptor Binding, and Antigenicity of Influenza Virus Hemagglutinins from the 1957 H2N2 Pandemic. Journal of Virology, 2010, 84, 1715-1721.	1.5	90
63	Mammalian adaptation of influenza A(H7N9) virus is limited by a narrow genetic bottleneck. Nature Communications, 2015, 6, 6553.	5.8	90
64	CD22 Is a Recycling Receptor That Can Shuttle Cargo between the Cell Surface and Endosomal Compartments of B Cells. Journal of Immunology, 2011, 186, 1554-1563.	0.4	89
65	Glycan-Targeted Virus-like Nanoparticles for Photodynamic Therapy. Biomacromolecules, 2012, 13, 2333-2338.	2.6	89
66	Sialoside Analogue Arrays for Rapid Identification of High Affinity Siglec Ligands. Journal of the American Chemical Society, 2008, 130, 6680-6681.	6.6	88
67	Recognition of Sialylated Polyâ€ <i>N</i> â€acetyllactosamine Chains on <i>N</i> ―and <i>O</i> ‣inked Glycans by Human and Avian Influenzaâ€A Virus Hemagglutinins. Angewandte Chemie - International Edition, 2012, 51, 4860-4863.	7.2	88
68	Antigen Delivery to Macrophages Using Liposomal Nanoparticles Targeting Sialoadhesin/CD169. PLoS ONE, 2012, 7, e39039.	1.1	87
69	Disubstituted sialic acid ligands targeting siglecs CD33 and CD22 associated with myeloid leukaemias and B cell lymphomas. Chemical Science, 2014, 5, 2398.	3.7	86
70	Systemic Blockade of Sialylation in Mice with a Global Inhibitor of Sialyltransferases. Journal of Biological Chemistry, 2014, 289, 35149-35158.	1.6	85
71	Receptor Specificity of Influenza A H3N2 Viruses Isolated in Mammalian Cells and Embryonated Chicken Eggs. Journal of Virology, 2010, 84, 8287-8299.	1.5	83
72	Three mutations switch H7N9 influenza to human-type receptor specificity. PLoS Pathogens, 2017, 13, e1006390.	2.1	83

#	Article	IF	CITATIONS
73	Probing the binding specificities of human Siglecs by cell-based glycan arrays. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	83
74	On-Virus Construction of Polyvalent Glycan Ligands for Cell-Surface Receptors. Journal of the American Chemical Society, 2008, 130, 4578-4579.	6.6	82
75	Click and Pick: Identification of Sialoside Analogues for Siglecâ€Based Cell Targeting. Angewandte Chemie - International Edition, 2012, 51, 11014-11018.	7.2	78
76	CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen. Journal of Clinical Investigation, 2019, 129, 1387-1401.	3.9	76
77	Copresentation of Antigen and Ligands of Siglec-G Induces B Cell Tolerance Independent of CD22. Journal of Immunology, 2013, 191, 1724-1731.	0.4	74
78	Efficient Preparation of Natural and Synthetic Galactosides with a Recombinant β-1,4-Galactosyltransferase-/UDP-4â€~-Gal Epimerase Fusion Protein. Journal of Organic Chemistry, 2001, 66, 2442-2448.	1.7	72
79	Siglec-8 and Siglec-9 binding specificities and endogenous airway ligand distributions and properties. Glycobiology, 2017, 27, 657-668.	1.3	72
80	Circulating Avian Influenza Viruses Closely Related to the 1918 Virus Have Pandemic Potential. Cell Host and Microbe, 2014, 15, 692-705.	5.1	71
81	Global site-specific analysis of glycoprotein N-glycan processing. Nature Protocols, 2018, 13, 1196-1212.	5.5	71
82	The minimum information required for a glycomics experiment (MIRAGE) project: improving the standards for reporting glycan microarray-based data. Glycobiology, 2017, 27, 280-284.	1.3	69
83	Bifunctional CD22 Ligands Use Multimeric Immunoglobulins as Protein Scaffolds in Assembly of Immune Complexes on B Cells. Journal of the American Chemical Society, 2008, 130, 7736-7745.	6.6	68
84	Conformational analysis of sialyloligosaccharides. Carbohydrate Research, 1991, 218, 27-54.	1.1	66
85	On-Chip Synthesis and Screening of a Sialoside Library Yields a High Affinity Ligand for Siglec-7. ACS Chemical Biology, 2013, 8, 1417-1422.	1.6	65
86	In Silico-Aided Design of a Glycan Ligand of Sialoadhesin for in Vivo Targeting of Macrophages. Journal of the American Chemical Society, 2012, 134, 15696-15699.	6.6	63
87	The minimum information required for a glycomics experiment (MIRAGE) project: sample preparation guidelines for reliable reporting of glycomics datasets. Glycobiology, 2016, 26, 907-910.	1.3	62
88	CD22 Ligands on a Natural <i>N</i> -Glycan Scaffold Efficiently Deliver Toxins to B-Lymphoma Cells. Journal of the American Chemical Society, 2017, 139, 12450-12458.	6.6	62
89	Hemagglutinin Receptor Specificity and Structural Analyses of Respiratory Droplet-Transmissible H5N1 Viruses. Journal of Virology, 2014, 88, 768-773.	1.5	61
90	Repression of phagocytosis by human CD33 is not conserved with mouse CD33. Communications Biology, 2019, 2, 450.	2.0	61

#	Article	IF	CITATIONS
91	Constitutively unmasked CD22 on B cells of ST6Gal I knockout mice: novel sialoside probe for murine CD22. Glycobiology, 2002, 12, 563-571.	1.3	59
92	Diversity of Functionally Permissive Sequences in the Receptor-Binding Site of Influenza Hemagglutinin. Cell Host and Microbe, 2017, 21, 742-753.e8.	5.1	59
93	A complex epistatic network limits the mutational reversibility in the influenza hemagglutinin receptor-binding site. Nature Communications, 2018, 9, 1264.	5.8	58
94	Adaptation of influenza viruses to human airway receptors. Journal of Biological Chemistry, 2021, 296, 100017.	1.6	58
95	Visualization of the HIV-1 Env glycan shield across scales. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28014-28025.	3.3	57
96	Site-Specific O-Glycosylation Analysis of SARS-CoV-2 Spike Protein Produced in Insect and Human Cells. Viruses, 2021, 13, 551.	1.5	57
97	H5N1 receptor specificity as a factor in pandemic risk. Virus Research, 2013, 178, 99-113.	1.1	56
98	Synthesis of Biologically Active <i>N</i> - and <i>O</i> -Linked Glycans with Multisialylated Poly- <i>N</i> -acetyllactosamine Extensions Using <i>P. damsela</i> α2-6 Sialyltransferase. Journal of the American Chemical Society, 2013, 135, 18280-18283.	6.6	55
99	CD22 Regulates Adaptive and Innate Immune Responses of B Cells. Journal of Innate Immunity, 2011, 3, 411-419.	1.8	54
100	Targeted Delivery of Mycobacterial Antigens to Human Dendritic Cells via Siglec-7 Induces Robust T Cell Activation. Journal of Immunology, 2014, 193, 1560-1566.	0.4	54
101	A Human-Infecting H10N8 Influenza Virus Retains a Strong Preference for Avian-type Receptors. Cell Host and Microbe, 2015, 17, 377-384.	5.1	54
102	Unmasking of CD22 Co-receptor on Germinal Center B-cells Occurs by Alternative Mechanisms in Mouse and Man. Journal of Biological Chemistry, 2015, 290, 30066-30077.	1.6	52
103	Co-evolution of HIV Envelope and Apex-Targeting Neutralizing Antibody Lineage Provides Benchmarks for Vaccine Design. Cell Reports, 2018, 23, 3249-3261.	2.9	52
104	Structural Basis of Protection against H7N9 Influenza Virus by Human Anti-N9 Neuraminidase Antibodies. Cell Host and Microbe, 2019, 26, 729-738.e4.	5.1	51
105	The virulence factor LecB varies in clinical isolates: consequences for ligand binding and drug discovery. Chemical Science, 2016, 7, 4990-5001.	3.7	50
106	Sialylated keratan sulfate proteoglycans are Siglec-8 ligands in human airways. Glycobiology, 2018, 28, 786-801.	1.3	50
107	Helicobacter pylori β1,3-N-acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans. Glycobiology, 2012, 22, 1453-1464.	1.3	49
108	Siglecs Induce Tolerance to Cell Surface Antigens by BIM-Dependent Deletion of the Antigen-Reactive B Cells. Journal of Immunology, 2014, 193, 4312-4321.	0.4	49

#	Article	IF	CITATIONS
109	Mechanistic Investigation and Multiplexing of Liposome-Assisted Metabolic Glycan Labeling. Journal of the American Chemical Society, 2018, 140, 3592-3602.	6.6	48
110	Exploiting CD22 on antigen-specific BÂcells to prevent allergy to the major peanut allergen Ara h 2. Journal of Allergy and Clinical Immunology, 2017, 139, 366-369.e2.	1.5	45
111	Preventing an Antigenically Disruptive Mutation in Egg-Based H3N2 Seasonal Influenza Vaccines by Mutational Incompatibility. Cell Host and Microbe, 2019, 25, 836-844.e5.	5.1	45
112	Structure and Receptor Binding of the Hemagglutinin from a Human H6N1 Influenza Virus. Cell Host and Microbe, 2015, 17, 369-376.	5.1	44
113	Mutation of the Second Sialic Acid-Binding Site, Resulting in Reduced Neuraminidase Activity, Preceded the Emergence of H7N9 Influenza A Virus. Journal of Virology, 2017, 91, .	1.5	44
114	A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to humanâ€ŧype receptors. EMBO Molecular Medicine, 2017, 9, 1314-1325.	3.3	44
115	Targeted Delivery of Antigen to Activated CD169+ Macrophages Induces Bias for Expansion of CD8+ T Cells. Cell Chemical Biology, 2019, 26, 131-136.e4.	2.5	44
116	Glycoengineering of NK Cells with Glycan Ligands of CD22 and Selectins for Bâ€Cell Lymphoma Therapy. Angewandte Chemie - International Edition, 2021, 60, 3603-3610.	7.2	44
117	Transitional and marginal zone B cells have a high proportion of unmasked CD22: implications for BCR signaling. International Immunology, 2003, 15, 1137-1147.	1.8	41
118	A Sulfonamide Sialoside Analogue for Targeting Siglec-8 and -F on Immune Cells. Journal of the American Chemical Society, 2019, 141, 14032-14037.	6.6	41
119	Nanoparticles Displaying Allergen and Siglec-8 Ligands Suppress IgE-FcεRI–Mediated Anaphylaxis and Desensitize Mast Cells to Subsequent Antigen Challenge. Journal of Immunology, 2021, 206, 2290-2300.	0.4	39
120	Amino acid residues at positions 222 and 227 of the hemagglutinin together with the neuraminidase determine binding of H5 avian influenza viruses to sialyl Lewis X. Archives of Virology, 2016, 161, 307-316.	0.9	38
121	CD22-Antagonists with nanomolar potency: The synergistic effect of hydrophobic groups at C-2 and C-9 of sialic acid scaffold. Bioorganic and Medicinal Chemistry, 2011, 19, 1966-1971.	1.4	37
122	Evolution of the Hemagglutinin Protein of the New Pandemic H1N1 Influenza Virus: Maintaining Optimal Receptor Binding by Compensatory Substitutions. Journal of Virology, 2013, 87, 13868-13877.	1.5	37
123	Human CD22 Inhibits Murine B Cell Receptor Activation in a Human CD22 Transgenic Mouse Model. Journal of Immunology, 2017, 199, 3116-3128.	0.4	37
124	Fluorescent Trimeric Hemagglutinins Reveal Multivalent Receptor Binding Properties. Journal of Molecular Biology, 2019, 431, 842-856.	2.0	36
125	The 150-Loop Restricts the Host Specificity of Human H10N8 Influenza Virus. Cell Reports, 2017, 19, 235-245.	2.9	35
126	In vivo tropism of Salmonella Typhi toxin to cells expressing a multiantennal glycan receptor. Nature Microbiology, 2018, 3, 155-163.	5.9	35

#	Article	IF	CITATIONS
127	Flexibility <i>In Vitro</i> of Amino Acid 226 in the Receptor-Binding Site of an H9 Subtype Influenza A Virus and Its Effect <i>In Vivo</i> on Virus Replication, Tropism, and Transmission. Journal of Virology, 2019, 93, .	1.5	34
128	Bacterial Polysaccharide Specificity of the Pattern Recognition Receptor Langerin Is Highly Species-dependent. Journal of Biological Chemistry, 2017, 292, 862-871.	1.6	33
129	Encapsulating an Immunosuppressant Enhances Tolerance Induction by Siglecâ€Engaging Tolerogenic Liposomes. ChemBioChem, 2017, 18, 1226-1233.	1.3	33
130	Genetically encoded multivalent liquid glycan array displayed on M13 bacteriophage. Nature Chemical Biology, 2021, 17, 806-816.	3.9	33
131	Identification of Stabilizing Mutations in an H5 Hemagglutinin Influenza Virus Protein. Journal of Virology, 2016, 90, 2981-2992.	1.5	31
132	Exploiting CD22 To Selectively Tolerize Autoantibody Producing B-Cells in Rheumatoid Arthritis. ACS Chemical Biology, 2019, 14, 644-654.	1.6	31
133	Salmonella Typhoid Toxin PltB Subunit and Its Non-typhoidal Salmonella Ortholog Confer Differential Host Adaptation and Virulence. Cell Host and Microbe, 2020, 27, 937-949.e6.	5.1	31
134	Siglec-F is a novel intestinal M cell marker. Biochemical and Biophysical Research Communications, 2016, 479, 1-4.	1.0	27
135	Modulation of Siglec-7 Signaling Via In Situ-Created High-Affinity <i>cis</i> -Ligands. ACS Central Science, 2021, 7, 1338-1346.	5.3	27
136	Innate Immune Response Triggers Lupus-like Autoimmune Disease. Cell, 2007, 130, 589-591.	13.5	26
137	Sialic Acid Ligands of CD28 Suppress Costimulation of T Cells. ACS Central Science, 2021, 7, 1508-1515.	5.3	24
138	Antigenic and virological properties of an H3N2 variant that continues to dominate the 2021–22 Northern Hemisphere influenza season. Cell Reports, 2022, 39, 110897.	2.9	24
139	Enhanced Human-Type Receptor Binding by Ferret-Transmissible H5N1 with a K193T Mutation. Journal of Virology, 2018, 92, .	1.5	23
140	Avenues to Characterize the Interactions of Extended Nâ€Glycans with Proteins by NMR Spectroscopy: The Influenza Hemagglutinin Case. Angewandte Chemie - International Edition, 2018, 57, 15051-15055.	7.2	23
141	SIGLEC-3 (CD33) serves as an immune checkpoint receptor for HBV infection. Journal of Clinical Investigation, 2021, 131, .	3.9	23
142	Human Influenza Virus Hemagglutinins Contain Conserved Oligomannose N-Linked Glycans Allowing Potent Neutralization by Lectins. Cell Host and Microbe, 2020, 27, 725-735.e5.	5.1	22
143	A vital sugar code for ricin toxicity. Cell Research, 2017, 27, 1351-1364.	5.7	20
144	Hemagglutinin Traits Determine Transmission of Avian A/H10N7 Influenza Virus between Mammals. Cell Host and Microbe, 2020, 28, 602-613.e7.	5.1	20

#	Article	IF	CITATIONS
145	Plasticity of Amino Acid Residue 145 Near the Receptor Binding Site of H3 Swine Influenza A Viruses and Its Impact on Receptor Binding and Antibody Recognition. Journal of Virology, 2019, 93, .	1.5	19
146	Tolerogenic Nanoparticles Impacting B and T Lymphocyte Responses Delay Autoimmune Arthritis in K/BxN Mice. ACS Chemical Biology, 2021, 16, 1985-1993.	1.6	19
147	Migration-based selections of antibodies that convert bone marrow into trafficking microglia-like cells that reduce brain amyloid Î ² . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E372-E381.	3.3	18
148	Glyco-engineering 'super-self'. Nature Chemical Biology, 2014, 10, 7-8.	3.9	16
149	Suppressing Immune Responses Using Siglec Ligand-Decorated Anti-receptor Antibodies. Journal of the American Chemical Society, 2022, 144, 9302-9311.	6.6	16
150	Proximity Ligationâ€Based Fluorogenic Imaging Agents for Neuraminidases. Angewandte Chemie - International Edition, 2018, 57, 13538-13541.	7.2	15
151	Potential for Low-Pathogenic Avian H7 Influenza A Viruses To Replicate and Cause Disease in a Mammalian Model. Journal of Virology, 2017, 91, .	1.5	14
152	Unique Structural Features of Influenza Virus H15 Hemagglutinin. Journal of Virology, 2017, 91, .	1.5	12
153	Murine Red Blood Cells Lack Ligands for B Cell Siglecs, Allowing Strong Activation by Erythrocyte Surface Antigens. Journal of Immunology, 2018, 200, 949-956.	0.4	12
154	Efficient Chemoenzymatic Synthesis of Nâ€Glycans with a β1,4â€Galactosylated Bisecting GlcNAc Motif. ChemBioChem, 2020, 21, 3212-3215.	1.3	12
155	Enhancement of Gene Knockdown on CD22-Expressing Cells by Chemically Modified Glycan Ligand–siRNA Conjugates. ACS Chemical Biology, 2022, 17, 292-298.	1.6	11
156	Changes to the dynamic nature of hemagglutinin and the emergence of the 2009 pandemic H1N1 influenza virus. Scientific Reports, 2015, 5, 12828.	1.6	10
157	Avenues to Characterize the Interactions of Extended Nâ€Glycans with Proteins by NMR Spectroscopy: The Influenza Hemagglutinin Case. Angewandte Chemie, 2018, 130, 15271-15275.	1.6	10
158	Coordinated changes in glycosylation regulate the germinal center through CD22. Cell Reports, 2022, 38, 110512.	2.9	10
159	A Miniaturized Glycan Microarray Assay for Assessing Avidity and Specificity of Influenza A Virus Hemagglutinins. Journal of Visualized Experiments, 2016, , .	0.2	9
160	Phenotypic Effects of Substitutions within the Receptor Binding Site of Highly Pathogenic Avian Influenza H5N1 Virus Observed during Human Infection. Journal of Virology, 2020, 94, .	1.5	8
161	DeGlyPHER: An Ultrasensitive Method for the Analysis of Viral Spike <i>N</i> -Glycoforms. Analytical Chemistry, 2021, 93, 13651-13657.	3.2	7
162	Proximity Ligationâ€Based Fluorogenic Imaging Agents for Neuraminidases. Angewandte Chemie, 2018, 130, 13726-13729.	1.6	5

#	Article	IF	CITATIONS
163	Improvement of Lipoplexes With a Sialic Acid Mimetic to Target the C1858T PTPN22 Variant for Immunotherapy in Endocrine Autoimmunity. Frontiers in Immunology, 2022, 13, 838331.	2.2	4
164	Synthesis of 9-Substituted Sialic Acids as Probes for CD22-Ligand Interactions on B Cells. ACS Symposium Series, 2007, , 2-14.	0.5	2
165	Glycoengineering of NK Cells with Glycan Ligands of CD22 and Selectins for Bâ€Cell Lymphoma Therapy. Angewandte Chemie, 2021, 133, 3647-3654.	1.6	2
166	Genetically encoded multivalent liquid glycan array displayed on M13 bacteriophage. FASEB Journal, 2022, 36, .	0.2	2
167	Recognition of Sialylated Poly-N-acetyllactosamine Chains on N- and O-Linked Glycans by Human and Avian Influenzaâ€A Virus Hemagglutinins. , 2012, 51, 4860.		1
168	Protein Scaffolds for Multivalent Display of Highâ€Affinity CD22 Ligands. FASEB Journal, 2008, 22, 810.1.	0.2	0
169	Tribute to Sen-itiroh Hakomori. Glycoconjugate Journal, 2022, , .	1.4	Ο