Marcelo Falcão de Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9378504/publications.pdf

Version: 2024-02-01

516710 610901 62 764 16 24 citations g-index h-index papers 63 63 63 652 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Alternative Air Induction Meltâ \in "Remelt Processing of an Fe3Alâ \in "C Intermetallic Alloy: Part Iâ \in "Mechanical Properties and the Effects of Loading Rate, Heat Treatment and Test Temperatures. International Journal of Metalcasting, 2022, 16, 1265-1275.	1.9	1
2	High temperature cyclic oxidation behavior of a low manganese Fe12Mn9Cr5Si4Ni-NbC shape memory stainless steels. Journal of Alloys and Compounds, 2021, 857, 158198.	5 . 5	9
3	Glass forming ability and continuous-cooling-transformation (CCT) diagrams of Vitreloy 105 as function of cooling rate and oxygen concentration. Journal of Non-Crystalline Solids, 2020, 528, 119762.	3.1	7
4	Effective Method to Enhance the Glass-Forming Ability of Vitreloy 105 Containing High Oxygen Concentrations. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 3518-3525.	2.2	4
5	Oxygen effect on bending behavior of a zirconium based bulk metallic glass. Journal of Non-Crystalline Solids, 2020, 535, 119966.	3.1	7
6	Vitreloy-105 Behavior Under Mutual Wear. Materials Research, 2020, 23, .	1.3	0
7	Phase formation maps in Zr48Cu46.5Al4Nb1.5 bulk metallic glass composites as a function of cooling rate and oxygen concentration. Materials Characterization, 2019, 158, 109932.	4.4	10
8	Anomalous cyclic oxidation behaviour of an Fe-Mn-Si-Cr-Ni alloy - A finite element analysis. Corrosion Science, 2019, 147, 223-230.	6.6	11
9	The elastic-strain energy criterion of phase formation for complex concentrated alloys. Materialia, 2019, 5, 100222.	2.7	29
10	Resistance upset welding of Zr-based bulk metallic glasses. Journal of Materials Processing Technology, 2018, 255, 760-764.	6.3	9
11	Influence of Small Content Elements Additions on the Glass Forming Ability of Zr-based Bulk Metallic Glasses Alloys. Materials Research, 2018, 21, .	1.3	6
12	Anomalous cyclic oxidation behaviour of a Fe–Mn–Si–Cr–Ni shape memory alloy. Corrosion Science, 2017, 119, 112-117.	6.6	25
13	Metastable phases found in the Ni-Nb-Zr system. Materials Characterization, 2017, 127, 60-63.	4.4	4
14	Crystalline phases found in rapidly quenched Ni–Nb–Zr alloys. Journal of Microscopy, 2017, 267, 49-56.	1.8	2
15	A basin-hopping Monte Carlo investigation of the structural and energetic properties of 55- and 561-atom bimetallic nanoclusters: the examples of the ZrCu, ZrAl, and CuAl systems. Journal of Physics Condensed Matter, 2016, 28, 175302.	1.8	13
16	Corrosion behaviour of a dissimilar joint TIG weld between austenitic AISI 316L and ferritic AISI 444 stainless steels. Welding International, 2016, 30, 268-276.	0.7	10
17	Crystallization Behavior of Amorphous Ti51.1Cu38.9Ni10.0 Alloy. Materials Research, 2015, 18, 104-108.	1.3	4
18	Y and Er minor addition effect on glass forming ability of a Ni–Nb–Zr alloy. Journal of Alloys and Compounds, 2015, 644, 729-733.	5.5	2

#	Article	IF	Citations
19	Structural differences of amorphous Cu65Zr35 between rapidly quenched and topologically destabilized crystalline Cu and Zr metals by molecular dynamics simulations. Computational Materials Science, 2015, 104, 92-97.	3.0	4
20	Glass formation in the Ti–Cu system with and without Si additions. Journal of Alloys and Compounds, 2015, 618, 413-420.	5.5	9
21	Resistência à corrosão de junta dissimilar soldada pelo processo TIG composta pelos aços inoxidáveis AISI 316L e AISI 444. Soldagem E Inspecao, 2014, 19, 42-50.	0.6	4
22	Development of a device adapted to perform the torch gas tungsten arc welding (GTAW) hardfacing using alloys in powder form. Scientific Research and Essays, 2014, 9, 96-105.	0.4	0
23	Synthesis of nanostructured SnO and SnO2 by high-energy milling of Sn powder with stearic acid. Journal of Materials Research, 2014, 29, 84-89.	2.6	6
24	Accuracy of a selection criterion for glass forming ability in the Ni–Nb–Zr system. Journal of Alloys and Compounds, 2014, 615, S23-S28.	5.5	10
25	Applying a new criterion to predict glass forming alloys in the Zr–Ni–Cu ternary system. Journal of Alloys and Compounds, 2013, 553, 212-215.	5.5	13
26	Corrosion resistance and glass forming ability of Fe47Co7Cr15M9Si5B15Y2 (M=Mo, Nb) amorphous alloys. Materials Research, 2013, 16, 1294-1298.	1.3	5
27	Wear resistance in hardfacing applied in substrate SAE 1020 using welding process Gas Tungsten Arc Welding (GTAW) alloy Stellite 6 in powder form. Scientific Research and Essays, 2013, 8, 1730-1740.	0.4	4
28	A simple criterion to predict the glass forming ability of metallic alloys. Journal of Applied Physics, 2012, 111, .	2.5	20
29	Selection of compositions with high glass forming ability in the Ni-Nb-B alloy system. Materials Research, 2012, 15, 718-722.	1.3	0
30	A new correlation between electronic parameters and glass forming ability of metallic alloys. Philosophical Magazine Letters, 2011, 91, 418-422.	1.2	10
31	Predicting glass-forming compositions in the Al–La and Al–La–Ni systems. Journal of Alloys and Compounds, 2011, 509, S170-S174.	5.5	6
32	Prediction of good glass formers in the Al-Ni-La and Al-Ni-Gd systems using topological instability and electronegativity. Journal of Applied Physics, 2011, 109, .	2.5	11
33	Oxidation and abrasive wear of Fe–Si and Fe–Al intermetallic alloys. Journal of Materials Science, 2010, 45, 5393-5397.	3.7	13
34	Fatigue behavior of friction stir spot welding and riveted joints in an Al alloy. Procedia Engineering, 2010, 2, 1815-1821.	1.2	23
35	Evaluation of glass forming ability in the Ni–Nb–Zr alloy system by the topological instability (λ) criterion. Journal of Alloys and Compounds, 2010, 495, 313-315.	5.5	10
36	Glass formation of alloys selected by lambda and electronegativity criteria in the Ti–Zr–Fe–Co system. Journal of Alloys and Compounds, 2010, 495, 316-318.	5 . 5	10

#	Article	IF	Citations
37	Crystallisation behaviour and glass-forming ability in Al–La–Ni system. Journal of Alloys and Compounds, 2010, 495, 334-337.	5.5	17
38	Selection of new glass-forming compositions in Al–La system using a combination of topological instability and thermodynamic criteria. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 512, 53-57.	5.6	2
39	Topological instability, average electronegativity difference and glass forming ability of amorphous alloys. Intermetallics, 2009, 17, 183-185.	3.9	25
40	Crystallisation behaviours of Al-based metallic glasses: Compositional and topological aspects. Journal of Alloys and Compounds, 2009, 483, 89-93.	5.5	34
41	Selection of good glass former compositions in Ni–Ti system using a combination of topological instability and thermodynamic criteria. Journal of Non-Crystalline Solids, 2008, 354, 1932-1935.	3.1	12
42	Thermodynamic and topological instability approaches for forecasting glass-forming ability in the ternary Al–Ni–Y system. Journal of Alloys and Compounds, 2008, 464, 118-121.	5.5	11
43	Topological instability and electronegativity effects on the glass-forming ability of metallic alloys. Philosophical Magazine Letters, 2008, 88, 785-791.	1.2	36
44	Topological Instability as a Criterion for Design and Selection of Easy Glass-Former Compositions in Cu-Zr Based Systems. Materials Transactions, 2007, 48, 1739-1742.	1.2	29
45	Consolidation of Easy Glass Former Zr ₅₅ Cu ₃₀ Al ₁₀ Ni ₅ Alloy Ribbons by Severe Plastic Deformation. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 253-256.	0.1	1
46	Directional and rapid solidification of Al–Nb–Ni ternary eutectic alloy. Materials Science & Directional A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 565-570.	5.6	10
47	Electromechanical shaping, assembly and engraving of bulk metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 227-234.	5.6	14
48	The effect of Nb substitution for Zr in soft magnetic FeCoZrCuB alloy. Journal of Alloys and Compounds, 2004, 369, 121-124.	5.5	6
49	Microstructure of undercooled SnSe–SnSe2 hypoeutectic alloy. Journal of Alloys and Compounds, 2004, 375, 142-146.	5.5	7
50	Amorphous phase partitioning in FeCo-based metallic glass alloys. Journal of Non-Crystalline Solids, 2004, 348, 250-257.	3.1	15
51	New highly magnetic and oxidation-resistant FeCo-based alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 361, 179-184.	5.6	7
52	Electromechanical Processing of Bulk Metallic Glasses. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 11-16.	0.1	2
53	Electromechanical engraving and writing on bulk metallic glasses. Applied Physics Letters, 2002, 81, 1606-1608.	3.3	7
54	Phases formed during crystallization of Zr55Al10Ni5Cu30 metallic glass containing oxygen. Journal of Non-Crystalline Solids, 2002, 304, 51-55.	3.1	25

#	Article	IF	Citations
55	Influence of the corrosion on the saturation magnetic density of amorphous and nanocrystalline Fe73Nb3Si15.5B7.5Cu1 and Fe80Zr3.5Nb3.5B12Cu1 alloys. Journal of Non-Crystalline Solids, 2002, 304, 210-216.	3.1	31
56	Influence of composition and partial crystallization on corrosion resistance of amorphous Fe–M–B–Cu (M=Zr, Nb, Mo) alloys. Journal of Non-Crystalline Solids, 2001, 284, 99-104.	3.1	20
57	Crystallization behavior of amorphous Al84Y9Ni5Co2 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 332-337.	5.6	33
58	Effect of oxide particles on the crystallisation behaviour of Zr55Al10Ni5Cu30 alloy. Materials Science & Science amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 665-669.	5.6	11
59	Connecting, Assemblage and Electromechanical Shaping of Bulk Metallic Glasses. Materials Transactions, JIM, 2000, 41, 1501-1504.	0.9	18
60	Corrosion resistance of amorphous and nanocrystalline Fe–M–B (MZr, Nb) alloys. Journal of Non-Crystalline Solids, 2000, 273, 282-288.	3.1	63
61	Growth and microstructural characterization of SnSe-SnSe2 composite. Journal of Materials Science, 1999, 34, 4607-4612.	3.7	17
62	Oxide Formation in a Melt Spun Alloy in the Zr-Ni-Cu System. Materials Research, 0, 25, .	1.3	0