Marcelo Falcão de Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9378504/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Corrosion resistance of amorphous and nanocrystalline Fe–M–B (MZr, Nb) alloys. Journal of Non-Crystalline Solids, 2000, 273, 282-288.	3.1	63
2	Topological instability and electronegativity effects on the glass-forming ability of metallic alloys. Philosophical Magazine Letters, 2008, 88, 785-791.	1.2	36
3	Crystallisation behaviours of Al-based metallic glasses: Compositional and topological aspects. Journal of Alloys and Compounds, 2009, 483, 89-93.	5.5	34
4	Crystallization behavior of amorphous Al84Y9Ni5Co2 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 332-337.	5.6	33
5	Influence of the corrosion on the saturation magnetic density of amorphous and nanocrystalline Fe73Nb3Si15.5B7.5Cu1 and Fe80Zr3.5Nb3.5B12Cu1 alloys. Journal of Non-Crystalline Solids, 2002, 304, 210-216.	3.1	31
6	Topological Instability as a Criterion for Design and Selection of Easy Glass-Former Compositions in Cu-Zr Based Systems. Materials Transactions, 2007, 48, 1739-1742.	1.2	29
7	The elastic-strain energy criterion of phase formation for complex concentrated alloys. Materialia, 2019, 5, 100222.	2.7	29
8	Phases formed during crystallization of Zr55Al10Ni5Cu30 metallic glass containing oxygen. Journal of Non-Crystalline Solids, 2002, 304, 51-55.	3.1	25
9	Topological instability, average electronegativity difference and glass forming ability of amorphous alloys. Intermetallics, 2009, 17, 183-185.	3.9	25
10	Anomalous cyclic oxidation behaviour of a Fe–Mn–Si–Cr–Ni shape memory alloy. Corrosion Science, 2017, 119, 112-117.	6.6	25
11	Fatigue behavior of friction stir spot welding and riveted joints in an Al alloy. Procedia Engineering, 2010, 2, 1815-1821.	1.2	23
12	Influence of composition and partial crystallization on corrosion resistance of amorphous Fe–M–B–Cu (M=Zr, Nb, Mo) alloys. Journal of Non-Crystalline Solids, 2001, 284, 99-104.	3.1	20
13	A simple criterion to predict the glass forming ability of metallic alloys. Journal of Applied Physics, 2012, 111, .	2.5	20
14	Connecting, Assemblage and Electromechanical Shaping of Bulk Metallic Glasses. Materials Transactions, JIM, 2000, 41, 1501-1504.	0.9	18
15	Growth and microstructural characterization of SnSe-SnSe2 composite. Journal of Materials Science, 1999, 34, 4607-4612.	3.7	17
16	Crystallisation behaviour and glass-forming ability in Al–La–Ni system. Journal of Alloys and Compounds, 2010, 495, 334-337.	5.5	17
17	Amorphous phase partitioning in FeCo-based metallic glass alloys. Journal of Non-Crystalline Solids, 2004, 348, 250-257.	3.1	15
18	Electromechanical shaping, assembly and engraving of bulk metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 227-234.	5.6	14

#	Article	IF	CITATIONS
19	Oxidation and abrasive wear of Fe–Si and Fe–Al intermetallic alloys. Journal of Materials Science, 2010, 45, 5393-5397.	3.7	13
20	Applying a new criterion to predict glass forming alloys in the Zr–Ni–Cu ternary system. Journal of Alloys and Compounds, 2013, 553, 212-215.	5.5	13
21	A basin-hopping Monte Carlo investigation of the structural and energetic properties of 55- and 561-atom bimetallic nanoclusters: the examples of the ZrCu, ZrAl, and CuAl systems. Journal of Physics Condensed Matter, 2016, 28, 175302.	1.8	13
22	Selection of good glass former compositions in Ni–Ti system using a combination of topological instability and thermodynamic criteria. Journal of Non-Crystalline Solids, 2008, 354, 1932-1935.	3.1	12
23	Effect of oxide particles on the crystallisation behaviour of Zr55Al10Ni5Cu30 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 665-669.	5.6	11
24	Thermodynamic and topological instability approaches for forecasting glass-forming ability in the ternary Al–Ni–Y system. Journal of Alloys and Compounds, 2008, 464, 118-121.	5.5	11
25	Prediction of good glass formers in the Al-Ni-La and Al-Ni-Gd systems using topological instability and electronegativity. Journal of Applied Physics, 2011, 109, .	2.5	11
26	Anomalous cyclic oxidation behaviour of an Fe-Mn-Si-Cr-Ni alloy - A finite element analysis. Corrosion Science, 2019, 147, 223-230.	6.6	11
27	Directional and rapid solidification of Al–Nb–Ni ternary eutectic alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 565-570.	5.6	10
28	Evaluation of glass forming ability in the Ni–Nb–Zr alloy system by the topological instability (λ) criterion. Journal of Alloys and Compounds, 2010, 495, 313-315.	5.5	10
29	Glass formation of alloys selected by lambda and electronegativity criteria in the Ti–Zr–Fe–Co system. Journal of Alloys and Compounds, 2010, 495, 316-318.	5.5	10
30	A new correlation between electronic parameters and glass forming ability of metallic alloys. Philosophical Magazine Letters, 2011, 91, 418-422.	1.2	10
31	Accuracy of a selection criterion for glass forming ability in the Ni–Nb–Zr system. Journal of Alloys and Compounds, 2014, 615, S23-S28.	5.5	10
32	Corrosion behaviour of a dissimilar joint TIG weld between austenitic AISI 316L and ferritic AISI 444 stainless steels. Welding International, 2016, 30, 268-276.	0.7	10
33	Phase formation maps in Zr48Cu46.5Al4Nb1.5 bulk metallic glass composites as a function of cooling rate and oxygen concentration. Materials Characterization, 2019, 158, 109932.	4.4	10
34	Glass formation in the Ti–Cu system with and without Si additions. Journal of Alloys and Compounds, 2015, 618, 413-420.	5.5	9
35	Resistance upset welding of Zr-based bulk metallic glasses. Journal of Materials Processing Technology, 2018, 255, 760-764.	6.3	9
36	High temperature cyclic oxidation behavior of a low manganese Fe12Mn9Cr5Si4Ni-NbC shape memory stainless steels. Journal of Alloys and Compounds, 2021, 857, 158198.	5.5	9

#	Article	IF	CITATIONS
37	Electromechanical engraving and writing on bulk metallic glasses. Applied Physics Letters, 2002, 81, 1606-1608.	3.3	7
38	New highly magnetic and oxidation-resistant FeCo-based alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 361, 179-184.	5.6	7
39	Microstructure of undercooled SnSe–SnSe2 hypoeutectic alloy. Journal of Alloys and Compounds, 2004, 375, 142-146.	5.5	7
40	Glass forming ability and continuous-cooling-transformation (CCT) diagrams of Vitreloy 105 as function of cooling rate and oxygen concentration. Journal of Non-Crystalline Solids, 2020, 528, 119762.	3.1	7
41	Oxygen effect on bending behavior of a zirconium based bulk metallic glass. Journal of Non-Crystalline Solids, 2020, 535, 119966.	3.1	7
42	The effect of Nb substitution for Zr in soft magnetic FeCoZrCuB alloy. Journal of Alloys and Compounds, 2004, 369, 121-124.	5.5	6
43	Predicting glass-forming compositions in the Al–La and Al–La–Ni systems. Journal of Alloys and Compounds, 2011, 509, S170-S174.	5.5	6
44	Synthesis of nanostructured SnO and SnO2 by high-energy milling of Sn powder with stearic acid. Journal of Materials Research, 2014, 29, 84-89.	2.6	6
45	Influence of Small Content Elements Additions on the Glass Forming Ability of Zr-based Bulk Metallic Glasses Alloys. Materials Research, 2018, 21, .	1.3	6
46	Corrosion resistance and glass forming ability of Fe47Co7Cr15M9Si5B15Y2 (M=Mo, Nb) amorphous alloys. Materials Research, 2013, 16, 1294-1298.	1.3	5
47	Wear resistance in hardfacing applied in substrate SAE 1020 using welding process Gas Tungsten Arc Welding (GTAW) alloy Stellite 6 in powder form. Scientific Research and Essays, 2013, 8, 1730-1740.	0.4	4
48	Resistência à corrosão de junta dissimilar soldada pelo processo TIG composta pelos aços inoxidáveis AISI 316L e AISI 444. Soldagem E Inspecao, 2014, 19, 42-50.	0.6	4
49	Crystallization Behavior of Amorphous Ti51.1Cu38.9Ni10.0 Alloy. Materials Research, 2015, 18, 104-108.	1.3	4
50	Structural differences of amorphous Cu65Zr35 between rapidly quenched and topologically destabilized crystalline Cu and Zr metals by molecular dynamics simulations. Computational Materials Science, 2015, 104, 92-97.	3.0	4
51	Metastable phases found in the Ni-Nb-Zr system. Materials Characterization, 2017, 127, 60-63.	4.4	4
52	Effective Method to Enhance the Glass-Forming Ability of Vitreloy 105 Containing High Oxygen Concentrations. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 3518-3525.	2.2	4
53	Electromechanical Processing of Bulk Metallic Glasses. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 11-16.	0.1	2
54	Selection of new glass-forming compositions in Al–La system using a combination of topological instability and thermodynamic criteria. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 512, 53-57.	5.6	2

#	Article	IF	CITATIONS
55	Y and Er minor addition effect on glass forming ability of a Ni–Nb–Zr alloy. Journal of Alloys and Compounds, 2015, 644, 729-733.	5.5	2
56	Crystalline phases found in rapidly quenched Ni–Nb–Zr alloys. Journal of Microscopy, 2017, 267, 49-56.	1.8	2
57	Consolidation of Easy Glass Former Zr ₅₅ Cu ₃₀ Al ₁₀ Ni ₅ Alloy Ribbons by Severe Plastic Deformation. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 253-256.	0.1	1
58	Alternative Air Induction Melt–Remelt Processing of an Fe3Al–C Intermetallic Alloy: Part I—Mechanical Properties and the Effects of Loading Rate, Heat Treatment and Test Temperatures. International Journal of Metalcasting, 2022, 16, 1265-1275.	1.9	1
59	Selection of compositions with high glass forming ability in the Ni-Nb-B alloy system. Materials Research, 2012, 15, 718-722.	1.3	Ο
60	Development of a device adapted to perform the torch gas tungsten arc welding (GTAW) hardfacing using alloys in powder form. Scientific Research and Essays, 2014, 9, 96-105.	0.4	0
61	Vitreloy-105 Behavior Under Mutual Wear. Materials Research, 2020, 23, .	1.3	0
62	Oxide Formation in a Melt Spun Alloy in the Zr-Ni-Cu System. Materials Research, 0, 25, .	1.3	0