Marina Ratova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9377985/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photocatalytic degradation of contaminants of emerging concern using a low-cost and efficient black bismuth titanate-based water treatment reactor. Journal of Water Process Engineering, 2022, 45, 102525.	5.6	3
2	Photocatalytic microfiltration membranes produced by magnetron sputtering with self-cleaning capabilities. Thin Solid Films, 2022, 747, 139143.	1.8	11
3	Development of a rapid method for assessing the efficacy of antibacterial photocatalytic coatings. Talanta, 2021, 225, 122009.	5.5	5
4	Design and optimisation of a low-cost titanium dioxide-coated stainless steel mesh photocatalytic water treatment reactor. Journal of Cleaner Production, 2021, 297, 126641.	9.3	18
5	Magnetron co-sputtered Bi12TiO20/Bi4Ti3O12 composite – An efficient photocatalytic material with photoinduced oxygen vacancies for water treatment application. Applied Surface Science, 2021, 552, 149486.	6.1	24
6	Visible light photocatalytic bismuth oxide coatings are effective at suppressing aquatic cyanobacteria and degrading free-floating genomic DNA. Journal of Environmental Sciences, 2021, 104, 128-136.	6.1	4
7	Deposition of Pt nanoparticles on TiO2 by pulsed direct current magnetron sputtering for selective hydrogenation of vanillin to vanillyl alcohol. Catalysis Today, 2020, 358, 51-59.	4.4	11
8	Crystalline TiO2 supported on stainless steel mesh deposited in a one step process via pulsed DC magnetron sputtering for wastewater treatment applications. Journal of Materials Research and Technology, 2020, 9, 5761-5773.	5.8	16
9	Micro-Patterning of Magnetron Sputtered Titanium Dioxide Coatings and Their Efficiency for Photocatalytic Applications. Coatings, 2020, 10, 68.	2.6	5
10	Cu and Pt clusters deposition on TiO2 powders by DC magnetron sputtering for photocatalytic hydrogen production. Catalysis Today, 2019, 326, 15-21.	4.4	16
11	Synthesis of Cu/TiO2 catalysts by reactive magnetron sputtering deposition and its application for photocatalytic reduction of CO2 and H2O to CH4. Ceramics International, 2019, 45, 22961-22971.	4.8	31
12	Characterisation and properties of visible light-active bismuth oxide-titania composite photocatalysts. Sustainable Materials and Technologies, 2019, 22, e00112.	3.3	7
13	Novel and versatile TiO2 thin films on PET for photocatalytic removal of contaminants of emerging concern from water. Chemical Engineering Journal, 2019, 370, 1251-1261.	12.7	32
14	Visible light active photocatalytic C-doped titanium dioxide films deposited via reactive pulsed DC magnetron co-sputtering: Properties and photocatalytic activity. Vacuum, 2018, 149, 214-224.	3.5	42
15	Magnetron Sputter-Coated Nanoparticle MoS ₂ Supported on Nanocarbon: A Highly Efficient Electrocatalyst toward the Hydrogen Evolution Reaction. ACS Omega, 2018, 3, 7235-7242.	3.5	22
16	Highly efficient photocatalytic bismuth oxide coatings and their antimicrobial properties under visible light irradiation. Applied Catalysis B: Environmental, 2018, 239, 223-232.	20.2	70
17	Superhydrophobic photocatalytic PTFE – Titania coatings deposited by reactive pDC magnetron sputtering from a blended powder target. Materials Chemistry and Physics, 2017, 190, 108-113.	4.0	14
18	Pulsed DC magnetron sputtering deposition of crystalline photocatalytic titania coatings at elevated process pressures. Materials Science in Semiconductor Processing, 2017, 71, 188-196.	4.0	15

MARINA RATOVA

#	Article	IF	CITATIONS
19	Reactive magnetron sputtering deposition of bismuth tungstate onto titania nanoparticles for enhancing visible light photocatalytic activity. Applied Surface Science, 2017, 392, 590-597.	6.1	20
20	Deposition of Visible Light-Active C-Doped Titania Films via Magnetron Sputtering Using CO2 as a Source of Carbon. Nanomaterials, 2017, 7, 113.	4.1	27
21	Reel-to-Reel Atmospheric Pressure Dielectric Barrier Discharge (DBD) Plasma Treatment of Polypropylene Films. Applied Sciences (Switzerland), 2017, 7, 337.	2.5	8
22	Reactive Magnetron Sputter Deposition of Bismuth Tungstate Coatings for Water Treatment Applications under Natural Sunlight. Catalysts, 2017, 7, 283.	3.5	20
23	A Novel Technique for the Deposition of Bismuth Tungstate onto Titania Nanoparticulates for Enhancing the Visible Light Photocatalytic Activity. Coatings, 2016, 6, 29.	2.6	11
24	Deposition of Visible Light Active Photocatalytic Bismuth Molybdate Thin Films by Reactive Magnetron Sputtering. Materials, 2016, 9, 67.	2.9	22
25	Synergistic effect of doping with nitrogen and molybdenum on the photocatalytic properties of thin titania films. Vacuum, 2015, 114, 205-212.	3.5	14
26	Structural Formation and Photocatalytic Activity of Magnetron Sputtered Titania and Doped-Titania Coatings. Molecules, 2014, 19, 16327-16348.	3.8	33
27	Visible light activated photocatalytic TaON coatings deposited via pulsed-DC magnetron sputtering. Vacuum, 2014, 109, 135-138.	3.5	7
28	An Investigation into W or Nb or ZnFe2O4 Doped Titania Nanocomposites Deposited from Blended Powder Targets for UV/Visible Photocatalysis. Coatings, 2013, 3, 153-165.	2.6	3
29	Optimization Studies of Photocatalytic Tungsten-Doped Titania Coatings Deposited by Reactive Magnetron Co-Sputtering. Coatings, 2013, 3, 194-207.	2.6	24