Shuwang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9377832/publications.pdf

Version: 2024-02-01

37 papers	2,586 citations	279487 23 h-index	315357 38 g-index
20	20	20	2150
39 all docs	39 docs citations	39 times ranked	2158 citing authors

#	Article	lF	CITATIONS
1	Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature, 2021, 590, 594-599.	13.7	625
2	Poly(vinyl alcohol) Hydrogels with Broadâ€Range Tunable Mechanical Properties via the Hofmeister Effect. Advanced Materials, 2021, 33, e2007829.	11.1	292
3	Superhydrophobic photothermal icephobic surfaces based on candle soot. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11240-11246.	3.3	220
4	Bioinspired Multifunctional Anti-icing Hydrogel. Matter, 2020, 2, 723-734.	5.0	150
5	Bioinspired high-power-density strong contractile hydrogel by programmable elastic recoil. Science Advances, 2020, 6, .	4.7	124
6	Oxidized Quasi arbon Nitride Quantum Dots Inhibit Ice Growth. Advanced Materials, 2017, 29, 1606843.	11.1	121
7	Bioinspired Solid Organogel Materials with a Regenerable Sacrificial Alkane Surface Layer. Advanced Materials, 2017, 29, 1700865.	11.1	109
8	Tunable Spongeâ€Like Hierarchically Porous Hydrogels with Simultaneously Enhanced Diffusivity and Mechanical Properties. Advanced Materials, 2021, 33, e2008235.	11.1	82
9	4D Printable Tough and Thermoresponsive Hydrogels. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12689-12697.	4.0	74
10	Selfâ€Replenishable Antiâ€Waxing Organogel Materials. Angewandte Chemie - International Edition, 2015, 54, 8975-8979.	7.2	71
11	Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials. Nature Communications, 2017, 8, 15154.	5.8	71
12	Solar anti-icing surface with enhanced condensate self-removing at extreme environmental conditions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	63
13	Toughâ€Hydrogel Reinforced Lowâ€Tortuosity Conductive Networks for Stretchable and Highâ€Performance Supercapacitors. Advanced Materials, 2021, 33, e2100983.	11.1	63
14	Woodâ€Inspired Morphologically Tunable Aligned Hydrogel for Highâ€Performance Flexible Allâ€Solidâ€State Supercapacitors. Advanced Functional Materials, 2020, 30, 1909133.	7.8	62
15	Heterogeneous ice nucleation correlates with bulk-like interfacial water. Science Advances, 2019, 5, eaat9825.	4.7	60
16	Durable Anti-Icing Coatings Based on Self-Sustainable Lubricating Layer. ACS Omega, 2017, 2, 2047-2054.	1.6	40
17	Size Controllable, Transparent, and Flexible 2D Silver Meshes Using Recrystallized Ice Crystals as Templates. ACS Nano, 2017, 11, 9898-9905.	7.3	38
18	Ion-specific ice propagation behavior on polyelectrolyte brush surfaces. RSC Advances, 2017, 7, 840-844.	1.7	34

#	Article	IF	CITATIONS
19	Hydrogel Ionotronics with Ultra‣ow Impedance and High Signal Fidelity across Broad Frequency and Temperature Ranges. Advanced Functional Materials, 2022, 32, 2109506.	7.8	34
20	Rapid and scalable fabrication of ultraâ€stretchable, antiâ€freezing conductive gels by cononsolvency effect. EcoMat, 2021, 3, e12085.	6.8	26
21	Highly Efficient and Robust Oil/Water Separation Materials Based on Wire Mesh Coated by Reduced Graphene Oxide. Langmuir, 2017, 33, 9590-9597.	1.6	25
22	Interfacial Materials for Antiâ€king: Beyond Superhydrophobic Surfaces. Chemistry - an Asian Journal, 2018, 13, 1406-1414.	1.7	25
23	Hydroxyl Groups on the Graphene Surfaces Facilitate Ice Nucleation. Journal of Physical Chemistry Letters, 2019, 10, 2458-2462.	2.1	24
24	Stimuli-Responsive Polymers for Soft Robotics. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5, 515-545.	7. 5	21
25	Tuning Ice Nucleation and Propagation with Counterions on Multilayer Hydrogels. Langmuir, 2018, 34, 11986-11991.	1.6	17
26	Tendon-inspired anti-freezing tough gels. IScience, 2021, 24, 102989.	1.9	15
27	Transparent, Photothermal, and Icephobic Surfaces via Layerâ€byâ€Layer Assembly. Advanced Science, 2022, 9, e2105986.	5.6	14
28	Inorganic Photonic Microspheres with Localized Concentric Ordering for Deep Pattern Encoding and Triple Sensory Microsensor. Small, 2020, 16, e2003638.	5.2	10
29	Recrystallized ice-templated electroless plating for fabricating flexible transparent copper meshes. RSC Advances, 2020, 10, 9894-9901.	1.7	10
30	Ion-Specific Effects on the Growth of Single Ice Crystals. Journal of Physical Chemistry Letters, 2021, 12, 8726-8731.	2.1	10
31	Unraveling Molecular Mechanism on Dilute Surfactant Solution Controlled Ice Recrystallization. Langmuir, 2020, 36, 1691-1698.	1.6	8
32	Precise Control Over Kinetics of Molecular Assembly: Production of Particles with Tunable Sizes and Crystalline Forms. Angewandte Chemie - International Edition, 2020, 59, 15141-15146.	7.2	8
33	Artificial Phototropic Systems for Enhanced Light Harvesting Based on a Liquid Crystal Elastomer. Advanced Intelligent Systems, 2021, 3, 2000234.	3.3	7
34	Tuning structural and mechanical anisotropy of PVA hydrogels. Mechanics of Materials, 2022, 172, 104411.	1.7	6
35	Gold Nanoprobes Exploring the Ice Structure in the Aqueous Dispersion of Poly(Ethylene) Tj ETQq1 1 0.784314	rgBT /Ovei	rlock 10 Tf 50
36	Precise Control Over Kinetics of Molecular Assembly: Production of Particles with Tunable Sizes and Crystalline Forms. Angewandte Chemie, 2020, 132, 15253-15258.	1.6	2

#	Article	IF	CITATIONS
37	Artificial Phototropic Systems for Enhanced Light Harvesting Based on a Liquid Crystal Elastomer. Advanced Intelligent Systems, 2021, 3, 2170070.	3.3	2