Ioannis A Fotidis

List of Publications by Citations

Source: https://exaly.com/author-pdf/9377558/ioannis-a-fotidis-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

43 1,969 24 44 g-index

44 2,400 8.8 5.21 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
43	Towards a standardization of biomethane potential tests. Water Science and Technology, 2016, 74, 251	5- <u>2.5</u> 22	379
42	Effect of ammonium and acetate on methanogenic pathway and methanogenic community composition. <i>FEMS Microbiology Ecology</i> , 2013 , 83, 38-48	4.3	165
41	Bioaugmentation as a solution to increase methane production from an ammonia-rich substrate. <i>Environmental Science & Environmental Science & Environm</i>	10.3	153
40	Bioaugmentation with an acetate-oxidising consortium as a tool to tackle ammonia inhibition of anaerobic digestion. <i>Bioresource Technology</i> , 2013 , 146, 57-62	11	98
39	Acclimation to extremely high ammonia levels in continuous biomethanation process and the associated microbial community dynamics. <i>Bioresource Technology</i> , 2018 , 247, 616-623	11	94
38	The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels. <i>International Journal of Environmental Science and Technology</i> , 2014 , 11, 2087-2094	3.3	82
37	Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate-oxidizing bacteria. <i>FEMS Microbiology Ecology</i> , 2015 , 91,	4.3	78
36	Comparative analysis of taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors by metagenomic sequencing and radioisotopic analysis. <i>Biotechnology for Biofuels</i> , 2016 , 9, 51	7.8	77
35	Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyper-thermophilic temperature (70 °C). <i>Biomass and Bioenergy</i> , 2009 , 33, 1168-1174	5.3	64
34	Acclimatization contributes to stable anaerobic digestion of organic fraction of municipal solid waste under extreme ammonia levels: Focusing on microbial community dynamics. <i>Bioresource Technology</i> , 2019 , 286, 121376	11	60
33	Ammonia tolerant inocula provide a good base for anaerobic digestion of microalgae in third generation biogas process. <i>Bioresource Technology</i> , 2017 , 225, 272-278	11	53
32	Effect of different ammonia sources on aceticlastic and hydrogenotrophic methanogens. <i>Bioresource Technology</i> , 2018 , 250, 390-397	11	47
31	Laminaria digitata as a potential carbon source for succinic acid and bioenergy production in a biorefinery perspective. <i>Algal Research</i> , 2015 , 9, 126-132	5	46
30	Anaerobic Co-digestion of Agricultural Byproducts with Manure for Enhanced Biogas Production. <i>Energy & Energy </i>	4.1	42
29	Hydrogenotrophic methanogens are the key for a successful bioaugmentation to alleviate ammonia inhibition in thermophilic anaerobic digesters. <i>Bioresource Technology</i> , 2019 , 293, 122070	11	41
28	Enriched ammonia-tolerant methanogenic cultures as bioaugmentation inocula in continuous biomethanation processes. <i>Journal of Cleaner Production</i> , 2017 , 166, 1305-1313	10.3	38
27	Bioaugmentation strategy for overcoming ammonia inhibition during biomethanation of a protein-rich substrate. <i>Chemosphere</i> , 2019 , 231, 415-422	8.4	37

(2018-2018)

26	Simultaneous biogas upgrading and biochemicals production using anaerobic bacterial mixed cultures. <i>Water Research</i> , 2018 , 142, 86-95	12.5	35
25	Different cultivation methods to acclimatise ammonia-tolerant methanogenic consortia. <i>Bioresource Technology</i> , 2017 , 232, 1-9	11	34
24	Effects of triclosan, diclofenac, and nonylphenol on mesophilic and thermophilic methanogenic activity and on the methanogenic communities. <i>Journal of Hazardous Materials</i> , 2015 , 291, 45-51	12.8	29
23	Effect of ammonia on anaerobic digestion of municipal solid waste: Inhibitory performance, bioaugmentation and microbiome functional reconstruction. <i>Chemical Engineering Journal</i> , 2020 , 401, 126159	14.7	29
22	Inoculum and zeolite synergistic effect on anaerobic digestion of poultry manure. <i>Environmental Technology (United Kingdom)</i> , 2014 , 35, 1219-25	2.6	26
21	Ammonia-LCFA synergetic co-inhibition effect in manure-based continuous biomethanation process. <i>Bioresource Technology</i> , 2016 , 209, 282-9	11	25
20	A proposed mechanism for the ammonia-LCFA synergetic co-inhibition effect on anaerobic digestion process. <i>Chemical Engineering Journal</i> , 2018 , 349, 574-580	14.7	25
19	Zeolite and swine inoculum effect on poultry manure biomethanation. <i>International Agrophysics</i> , 2013 , 27, 169-173	2	23
18	Detailing the start-up and microalgal growth performance of a full-scale photobioreactor operated with bioindustrial wastewater. <i>Algal Research</i> , 2017 , 25, 101-108	5	19
17	A systematic methodology to extend the applicability of a bioconversion model for the simulation of various co-digestion scenarios. <i>Bioresource Technology</i> , 2017 , 235, 157-166	11	19
16	Biogas upgrading and biochemical production from gas fermentation: Impact of microbial community and gas composition. <i>Bioresource Technology</i> , 2019 , 286, 121413	11	18
15	Insights into Ammonia Adaptation and Methanogenic Precursor Oxidation by Genome-Centric Analysis. <i>Environmental Science & Environmental Science & Env</i>	10.3	18
14	16s rRNA gene sequencing and radioisotopic analysis reveal the composition of ammonia acclimatized methanogenic consortia. <i>Bioresource Technology</i> , 2019 , 272, 54-62	11	17
13	Wirelessly powered submerged-light illuminated photobioreactors for efficient microalgae cultivation. <i>Algal Research</i> , 2017 , 25, 244-251	5	14
12	Effects of Benzalkonium Chloride, Proxel LV, P3 Hypochloran, Triton X-100 and DOWFAX 63N10 on anaerobic digestion processes. <i>Bioresource Technology</i> , 2015 , 193, 393-400	11	13
11	Alternative co-digestion scenarios for efficient fixed-dome reactor biomethanation processes. <i>Journal of Cleaner Production</i> , 2016 , 127, 610-617	10.3	13
10	Up-concentration of succinic acid, lactic acid, and ethanol fermentations broths by forward osmosis. <i>Biochemical Engineering Journal</i> , 2020 , 155, 107482	4.2	12
9	Microalgal process-monitoring based on high-selectivity spectroscopy tools: status and future perspectives. <i>Critical Reviews in Biotechnology</i> , 2018 , 38, 704-718	9.4	11

8	Forward-osmosis anaerobic-membrane bioreactors for brewery wastewater remediation. <i>Separation and Purification Technology</i> , 2021 , 257, 117786	8.3	7
7	Long-term preserved and rapidly revived methanogenic cultures: Microbial dynamics and preservation mechanisms. <i>Journal of Cleaner Production</i> , 2020 , 263, 121577	10.3	5
6	Recovery of intermittent cycle extended aeration system sludge through conversion into biodiesel by in-situ transesterification. <i>Renewable Energy</i> , 2021 , 163, 56-65	8.1	5
5	Comprehensive evaluation of different strategies to recover methanogenic performance in ammonia-stressed reactors. <i>Bioresource Technology</i> , 2021 , 336, 125329	11	5
4	Saline fish wastewater in biogas plants - Biomethanation toxicity and safe use. <i>Journal of Environmental Management</i> , 2020 , 275, 111233	7.9	4
3	Feeding strategies of continuous biomethanation processes during increasing organic loading with lipids or glucose for avoiding potential inhibition. <i>Bioresource Technology</i> , 2021 , 327, 124812	11	3
2	The implications of using organic-rich industrial wastewater as biomethanation feedstocks. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 144, 110987	16.2	3
1	Novel bioaugmentation strategy boosted with biochar to alleviate ammonia toxicity in continuous biomethanation. <i>Bioresource Technology</i> , 2022 , 343, 126146	11	1