
Seyedsaeed Mehrabi-Kalajahi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/937721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic combustion of heavy oil using γ-Fe2O3 nanocatalyst in in-situ combustion process. Journal of Petroleum Science and Engineering, 2022, 209, 109819.	4.2	7
2	Catalytic combustion of heavy crude oil by oil-dispersed copper-based catalysts: Effect of different organic ligands. Fuel, 2022, 316, 123335.	6.4	7
3	Effect of Different Water Content and Catalyst on the Performance of Heavy Oil Oxidation in Porous Media for In Situ Upgrading. Industrial & Engineering Chemistry Research, 2022, 61, 9234-9248.	3.7	4
4	Entropy-stabilized metal oxide nanoparticles supported on reduced graphene oxide as a highly active heterogeneous catalyst for selective and solvent-free oxidation of toluene: a combined experimental and numerical investigation. Journal of Materials Chemistry A, 2022, 10, 14488-14500.	10.3	12
5	Improving heavy oil oxidation performance by oil-dispersed CoFe2O4 nanoparticles in In-situ combustion process for enhanced oil recovery. Fuel, 2021, 285, 119216.	6.4	25
6	Oil-Dispersed α-Fe ₂ O ₃ Nanoparticles as a Catalyst for Improving Heavy Oil Oxidation. Energy & Fuels, 2021, 35, 10498-10511.	5.1	15
7	Thermo-Gas-Chemical Stimulation as a Revolutionary lor-Eor Method by the in-Situ Generation of Hot Nitrogen and Acid. , 2021, , .		2
8	Effect of copper stearate as catalysts on the performance of in-situ combustion process for heavy oil recovery and upgrading. Journal of Petroleum Science and Engineering, 2021, 207, 109125.	4.2	51
9	A 3-Step Reaction Model For Numerical Simulation of In-Situ Combustion. , 2021, , .		1
10	Response to Comment on Oil-Dispersed α-Fe ₂ O ₃ Nanoparticles as a Catalyst for Improving Heavy Oil Oxidation. Energy & Fuels, 2021, 35, 20413-20417.	5.1	1
11	Oxidation of Heavy Oil Using Oil-Dispersed Transition Metal Acetylacetonate Catalysts for Enhanced Oil Recovery. Energy & Fuels, 2021, 35, 20284-20299.	5.1	7
12	Low-temperature combustion behavior of crude oils in porous media under air flow condition for in-situ combustion (ISC) process. Fuel, 2020, 259, 116293.	6.4	42
13	Low-temperature combustion characteristics of heavy oils by a self-designed porous medium thermo-effect cell. Journal of Petroleum Science and Engineering, 2020, 195, 107863.	4.2	14
14	Potential of Copper-Based Oil Soluble Catalyst for Improving Efficiency of In-Situ Combustion Process: Catalytic Combustion, Catalytic In-Situ Oil Upgrading, and Increased Oil Recovery. , 2019, , .		13
15	CATALYTIC IN-SITU COMBUSTION PROCESS IN THE PRESENCE OF METAL OXIDE PARTICLES. , 2019, , .		0
16	A New, Fast, and Efficient Method for Evaluating the Influence of Catalysts on In-Situ Combustion Process for Heavy Oil Recovery. , 2018, , .		11
17	Using EPR Technique for Monitoring of ISC Processes and Reservoirs Temperature in Enhanced Oil Recovery. , 2018, , .		0
18	EPR as a complementary tool for the analysis of low-temperature oxidation reactions of crude oils. Journal of Petroleum Science and Engineering, 2018, 169, 673-682.	4.2	31

#	Article	IF	CITATIONS
19	NEW INSIGHT IN CRUDE OIL OXIDATION STUDY: USING NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY. , 2018, , .		0
20	STUDY OF CATALYST EFFECT ON HEAVY CRUDE OIL OXIDATION PROCESS IN ENHANCING OIL RECOVERY. , 2018, , .		1
21	OXIDATION BEHAVOIR OF HEAVY OIL IN PRESENCE OF CUMENEHYDROPEROXIDE AS AN IGNITION AGENT. , 2017, , .		0
22	Selective photocatalytic oxidation of alcohols to corresponding aldehydes in solvent-free conditions using porphyrin sensitizers. Journal of the Iranian Chemical Society, 2016, 13, 1069-1076.	2.2	10
23	Highly efficient, green and solvent-free photooxygenation of alkenes by air and visible light or sunlight in the presence of porphyrin sensitizers. Reaction Kinetics, Mechanisms and Catalysis, 2014, 113, 629-640.	1.7	11