
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9376464/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 2014, 346, 1320-1331.	12.6	1,583
2	The elevational gradient of species richness: a uniform pattern?. Ecography, 1995, 18, 200-205.	4.5	1,082
3	The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters, 2004, 8, 224-239.	6.4	1,038
4	An Update of Wallace's Zoogeographic Regions of the World. Science, 2013, 339, 74-78.	12.6	1,037
5	Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 2014, 346, 1311-1320.	12.6	895
6	Multiscale assessment of patterns of avian species richness. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 4534-4539.	7.1	722
7	Standards for distribution models in biodiversity assessments. Science Advances, 2019, 5, eaat4858.	10.3	605
8	Species-specific responses of Late Quaternary megafauna to climate and humans. Nature, 2011, 479, 359-364.	27.8	586
9	Geographic Range Size and Determinants of Avian Species Richness. Science, 2002, 297, 1548-1551.	12.6	572
10	Multiple Dimensions of Climate Change and Their Implications for Biodiversity. Science, 2014, 344, 1247579.	12.6	519
11	Humboldt's enigma: What causes global patterns of mountain biodiversity?. Science, 2019, 365, 1108-1113.	12.6	505
12	Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature, 2011, 480, 516-519.	27.8	504
13	The Midâ€Ðomain Effect and Species Richness Patterns:What Have We Learned So Far?. American Naturalist, 2004, 163, E1-E23.	2.1	484
14	How Does Climate Change Affect Biodiversity?. Science, 2006, 313, 1396-1397.	12.6	476
15	The Relationship Among Area, Elevation, And Regional Species Richness In Neotropical Birds. American Naturalist, 1997, 149, 875-902.	2.1	466
16	Conservation Conflicts Across Africa. Science, 2001, 291, 2616-2619.	12.6	454
17	Scale effects and human impact on the elevational species richness gradients. Nature, 2008, 453, 216-219.	27.8	452
18	Building mountain biodiversity: Geological and evolutionary processes. Science, 2019, 365, 1114-1119.	12.6	415

#	Article	IF	CITATIONS
19	Geological and climatic influences on mountain biodiversity. Nature Geoscience, 2018, 11, 718-725.	12.9	390
20	The patterns and causes of elevational diversity gradients. Ecography, 2012, 35, 1-3.	4.5	363
21	SESAM - a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. Journal of Biogeography, 2011, 38, 1433-1444.	3.0	347
22	Quaternary climate changes explain diversity among reptiles and amphibians. Ecography, 2008, 31, 8-15.	4.5	345
23	Phylogenetic structure in tropical hummingbird communities. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19673-19678.	7.1	341
24	Radiation of Extant Cetaceans Driven by Restructuring of the Oceans. Systematic Biology, 2009, 58, 573-585.	5.6	315
25	The Role of Mountain Ranges in the Diversification of Birds. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 249-265.	8.3	309
26	The coincidence of rarity and richness and the potential signature of history in centres of endemism. Ecology Letters, 2004, 7, 1180-1191.	6.4	304
27	Patterns and causes of species richness: a general simulation model for macroecology. Ecology Letters, 2009, 12, 873-886.	6.4	286
28	AVONET: morphological, ecological and geographical data for all birds. Ecology Letters, 2022, 25, 581-597.	6.4	280
29	The partitioning of Africa: statistically defined biogeographical regions in subâ€6aharan Africa. Journal of Biogeography, 2012, 39, 1189-1205.	3.0	276
30	Predicting continental-scale patterns of bird species richness with spatially explicit models. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 165-174.	2.6	271
31	Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science, 2018, 361, .	12.6	260
32	The population history of northeastern Siberia since the Pleistocene. Nature, 2019, 570, 182-188.	27.8	259
33	An Anthropocene map of genetic diversity. Science, 2016, 353, 1532-1535.	12.6	251
34	Dense sampling of bird diversity increases power of comparative genomics. Nature, 2020, 587, 252-257.	27.8	251
35	Projected impacts of climate change on a continentâ€wide protected area network. Ecology Letters, 2009, 12, 420-431.	6.4	240
36	Coefficient shifts in geographical ecology: an empirical evaluation of spatial and nonâ€spatial regression. Ecography, 2009, 32, 193-204.	4.5	231

#	Article	IF	CITATIONS
37	Macroecological signals of species interactions in the Danish avifauna. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5030-5035.	7.1	229
38	Geometric constraints explain much of the species richness pattern in African birds. Proceedings of the United States of America, 2001, 98, 5661-5666.	7.1	211
39	Resource tracking within and across continents in long-distance bird migrants. Science Advances, 2017, 3, e1601360.	10.3	199
40	The annual cycle of a trans-equatorial Eurasian–African passerine migrant: different spatio-temporal strategies for autumn and spring migration. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1008-1016.	2.6	198
41	Potential impacts of climatic change upon geographical distributions of birds. Ibis, 2006, 148, 8-28.	1.9	188
42	Food plant diversity as broad-scale determinant of avian frugivore richness. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 799-808.	2.6	188
43	Inferring local ecological processes amid species pool influences. Trends in Ecology and Evolution, 2012, 27, 600-607.	8.7	188
44	Latitude, elevational climatic zonation and speciation in New World vertebrates. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 194-201.	2.6	186
45	The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography, 2014, 37, 711-719.	4.5	182
46	Rethinking species' ability to cope with rapid climate change. Global Change Biology, 2011, 17, 2987-2990.	9.5	177
47	What determines spatial bias in citizen science? Exploring four recording schemes with different proficiency requirements. Diversity and Distributions, 2016, 22, 1139-1149.	4.1	165
48	GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Scientific Data, 2018, 5, 180022.	5.3	164
49	It's time to work together and stop duplicating conservation efforts $\hat{a} \in $ Nature, 2000, 405, 393-393.	27.8	163
50	Using species coâ€occurrence networks to assess the impacts of climate change. Ecography, 2011, 34, 897-908.	4.5	160
51	Toward a Blueprint for Conservation in Africa. BioScience, 2001, 51, 613.	4.9	158
52	Understanding (insect) species distributions across spatial scales. Ecography, 2010, 33, 51-53.	4.5	158
53	Potential impacts of climate change on the distributions and diversity patterns of European mammals. Biodiversity and Conservation, 2007, 16, 3803-3816.	2.6	156
54	Spatial predictions at the community level: from current approaches to future frameworks. Biological Reviews, 2017, 92, 169-187.	10.4	153

#	Article	IF	CITATIONS
55	Flagship species, ecological complementarity and conserving the diversity of mammals and birds in sub-Saharan Africa. Animal Conservation, 2000, 3, 249-260.	2.9	152
56	Ecological and evolutionary determinants for the adaptive radiation of the Madagascan vangas. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6620-6625.	7.1	151
57	Global patterns of amphibian phylogenetic diversity. Journal of Biogeography, 2012, 39, 1373-1382.	3.0	151
58	The evolution of critical thermal limits of life on Earth. Nature Communications, 2021, 12, 1198.	12.8	149
59	Drought in Africa Caused Delayed Arrival of European Songbirds. Science, 2012, 338, 1307-1307.	12.6	144
60	Specialization in Plant-Hummingbird Networks Is Associated with Species Richness, Contemporary Precipitation and Quaternary Climate-Change Velocity. PLoS ONE, 2011, 6, e25891.	2.5	142
61	A GLOBAL EVALUATION OF METABOLIC THEORY AS AN EXPLANATION FOR TERRESTRIAL SPECIES RICHNESS GRADIENTS. Ecology, 2007, 88, 1877-1888.	3.2	139
62	Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates. Global Change Biology, 2012, 18, 1253-1269.	9.5	136
63	Bird sequencing project takes off. Nature, 2015, 522, 34-34.	27.8	136
64	Causality of the Relationship between Geographic Distribution and Species Abundance. Quarterly Review of Biology, 2010, 85, 3-25.	0.1	132
65	Rewilding is the new Pandora's box in conservation. Current Biology, 2016, 26, R87-R91.	3.9	132
66	Large-scale determinants of intestinal schistosomiasis and intermediate host snail distribution across Africa: does climate matter?. Acta Tropica, 2013, 128, 378-390.	2.0	131
67	Global warming favours light-coloured insects in Europe. Nature Communications, 2014, 5, 3874.	12.8	128
68	Avian migrants adjust migration in response to environmental conditions <i>en route</i> . Biology Letters, 2008, 4, 685-688.	2.3	126
69	… following Africa's lead in setting priorities. Nature, 2000, 405, 393-394.	27.8	122
70	Process, Mechanism, and Modeling in Macroecology. Trends in Ecology and Evolution, 2017, 32, 835-844.	8.7	119
71	Detection of macro-ecological patterns in South American hummingbirds is affected by spatial scale. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 2259-2265.	2.6	117
72	Source pool geometry and the assembly of continental avifaunas. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7871-7876.	7.1	117

#	Article	IF	CITATIONS
73	Historical climate hange influences modularity and nestedness of pollination networks. Ecography, 2013, 36, 1331-1340.	4.5	116
74	Correlations among species distributions, human density and human infrastructure across the high biodiversity tropical mountains of Africa. Biological Conservation, 2007, 134, 164-177.	4.1	114
75	Opposed latitudinal patterns of networkâ€derived and dietary specialization in avian plant–frugivore interaction systems. Ecography, 2017, 40, 1395-1401.	4.5	111
76	Life on a tropical planet: niche conservatism and the global diversity gradient. Global Ecology and Biogeography, 2013, 22, 344-350.	5.8	105
77	Performance of Sub-Saharan Vertebrates as Indicator Groups for Identifying Priority Areas for Conservation. Conservation Biology, 2003, 17, 207-218.	4.7	102
78	Strong influence of regional species pools on continent-wide structuring of local communities. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 266-274.	2.6	102
79	The macroecology of phylogenetically structured hummingbird–plant networks. Global Ecology and Biogeography, 2015, 24, 1212-1224.	5.8	100
80	Introducing the biogeographic species pool. Ecography, 2013, 36, 1310-1318.	4.5	99
81	Phylogenetic uncertainty revisited: Implications for ecological analyses. Evolution; International Journal of Organic Evolution, 2015, 69, 1301-1312.	2.3	98
82	Using paleo-archives to safeguard biodiversity under climate change. Science, 2020, 369, .	12.6	98
83	The distribution of cultural and biological diversity in Africa. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1645-1653.	2.6	96
84	Conservation and the botanist effect. Biological Conservation, 2011, 144, 131-140.	4.1	95
85	Local Temperature Fine-Tunes the Timing of Spring Migration in Birds. Integrative and Comparative Biology, 2010, 50, 293-304.	2.0	94
86	Local and global approaches to spatial data analysis in ecology. Global Ecology and Biogeography, 2005, 14, 97-98.	5.8	93
87	Cross-taxon congruence in complementarity and conservation of temperate biodiversity. Animal Conservation, 2002, 5, 163-171.	2.9	87
88	Biodiversity response to forest structure and management: Comparing species richness, conservation relevant species and functional diversity as metrics in forest conservation. Forest Ecology and Management, 2019, 432, 707-717.	3.2	87
89	Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. Journal of Biogeography, 2013, 40, 2310-2323.	3.0	83
90	The Midâ€Domain Effect: There's a Baby in the Bathwater. American Naturalist, 2005, 166, E149-E154.	2.1	82

#	Article	IF	CITATIONS
91	Late Quaternary dynamics of Arctic biota from ancient environmental genomics. Nature, 2021, 600, 86-92.	27.8	81
92	Patterns of phenological changes in migratory birds. Oecologia, 2007, 151, 697-703.	2.0	78
93	Potential impacts of climate change on the winter distribution of Afro-Palaearctic migrant passerines. Biology Letters, 2009, 5, 248-251.	2.3	78
94	Birds as biodiversity surrogates: will supplementing birds with other taxa improve effectiveness?. Journal of Applied Ecology, 2012, 49, 349-356.	4.0	78
95	Biogeographical modules and island roles: a comparison of Wallacea and the West Indies. Journal of Biogeography, 2012, 39, 739-749.	3.0	78
96	Coral mass spawning predicted by rapid seasonal rise in ocean temperature. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160011.	2.6	78
97	Transmission of <i>Salmonella</i> between wildlife and meat-production animals in Denmark. Journal of Applied Microbiology, 2008, 105, 1558-1568.	3.1	77
98	Supermatrix phylogeny and biogeography of the Australasian Meliphagides radiation (Aves:) Tj ETQq0 0 0 rgBT /(Dverlock 1	0 <u>Tf</u> 50 462 ⁻
99	Climatic niche conservatism and the evolutionary dynamics in species range boundaries: global congruence across mammals and amphibians. Journal of Biogeography, 2011, 38, 2237-2247.	3.0	75
100	Global distribution and drivers of language extinction risk. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141574.	2.6	75
101	Diversification of tanagers, a species rich bird group, from lowlands to montane regions of south america. Integrative and Comparative Biology, 2006, 46, 72-81.	2.0	74
102	A supermatrix phylogeny of corvoid passerine birds (Aves: Corvides). Molecular Phylogenetics and Evolution, 2016, 94, 87-94.	2.7	73
103	Matching species traits to projected threats and opportunities from climate change. Journal of Biogeography, 2014, 41, 724-735.	3.0	72
104	Integrating climate change vulnerability assessments from species distribution models and trait-based approaches. Biological Conservation, 2015, 190, 167-178.	4.1	70
105	Linking environmental filtering and disequilibrium to biogeography with a community climate framework. Ecology, 2015, 96, 972-985.	3.2	70
106	Persistent Quaternary climate refugia are hospices for biodiversity in the Anthropocene. Nature Climate Change, 2020, 10, 244-248.	18.8	70
107	Global patterns of interaction specialization in bird–flower networks. Journal of Biogeography, 2017, 44, 1891-1910.	3.0	68
108	Patterns of change in timing of spring migration in North European songbird populations. Journal of Avian Biology, 2006, 37, 84-92.	1.2	67

#	Article	IF	CITATIONS
109	Evolutionary history and past climate change shape the distribution of genetic diversity in terrestrial mammals. Nature Communications, 2020, 11, 2557.	12.8	62
110	Captive breeding?a useful tool in the preservation of biodiversity?. Biodiversity and Conservation, 1993, 2, 426-437.	2.6	61
111	Towards a more mechanistic understanding of traits and range sizes. Global Ecology and Biogeography, 2013, 22, 233-241.	5.8	61
112	Campylobacter jejuni and Campylobacter coli in wild birds on Danish livestock farms. Acta Veterinaria Scandinavica, 2015, 58, 11.	1.6	61
113	Virtual globes and geospatial health: the potential of new tools in the management and control of vector-borne diseases. Geospatial Health, 2009, 3, 127.	0.8	60
114	Habitat stability affects dispersal and the ability to track climate change. Biology Letters, 2012, 8, 639-643.	2.3	57
115	Improvements in reports of species redistribution under climate change are required. Science Advances, 2021, 7, .	10.3	56
116	Landâ€use change and biodiversity: Challenges for assembling evidence on the greatest threat to nature. Global Change Biology, 2021, 27, 5414-5429.	9.5	55
117	Comparing diversity data collected using a protocol designed for volunteers with results from a professional alternative. Methods in Ecology and Evolution, 2013, 4, 383-392.	5.2	54
118	Geographical variation in the importance of water and energy for oak diversity. Journal of Biogeography, 2016, 43, 279-288.	3.0	54
119	Process-Based Species Pools Reveal the Hidden Signature of Biotic Interactions Amid the Influence of Temperature Filtering. American Naturalist, 2016, 187, 75-88.	2.1	54
120	Tracking Animal Dispersal: From Individual Movement to Community Assembly and Global Range Dynamics. Trends in Ecology and Evolution, 2016, 31, 204-214.	8.7	54
121	Into and out of the tropics: the generation of the latitudinal gradient among New World passerine birds. Journal of Biogeography, 2014, 41, 1746-1757.	3.0	53
122	Response to Comment on "Whole-genome analyses resolve early branches in the tree of life of modern birds― Science, 2015, 349, 1460-1460.	12.6	53
123	Modeling freshwater snail habitat suitability and areas of potential snail-borne disease transmission in Uganda. Geospatial Health, 2006, 1, 93.	0.8	52
124	Funding begets biodiversity. Diversity and Distributions, 2011, 17, 191-200.	4.1	52
125	Equilibrium of Global Amphibian Species Distributions with Climate. PLoS ONE, 2012, 7, e34420.	2.5	52
126	Continentâ€scale global change attribution in European birds ―combining annual and decadal time scales. Global Change Biology, 2016, 22, 530-543.	9.5	51

#	Article	IF	CITATIONS
127	Phylogenetic signals in the climatic niches of the world's amphibians. Ecography, 2010, 33, 242-250.	4.5	48
128	METABOLIC THEORY AND DIVERSITY GRADIENTS: WHERE DO WE GO FROM HERE?. Ecology, 2007, 88, 1898-1902.	3.2	47
129	Evolutionary history influences the effects of water–energy dynamics on oak diversity in Asia. Journal of Biogeography, 2013, 40, 2146-2155.	3.0	47
130	The integration of alien plants in mutualistic plant–hummingbird networks across the Americas: the importance of species traits and insularity. Diversity and Distributions, 2016, 22, 672-681.	4.1	47
131	Heuristic and optimal solutions for set-covering problems in conservation biology. Ecography, 2003, 26, 595-601.	4.5	46
132	Using potential distributions to explore determinants of Western Palaearctic migratory songbird species richness in sub-Saharan Africa. Journal of Biogeography, 2007, 34, 828-841.	3.0	46
133	Indicator taxa revisited: useful for conservation planning?. Diversity and Distributions, 2009, 15, 70-79.	4.1	46
134	Patterns of change in timing of spring migration in North European songbird populations. Journal of Avian Biology, 2006, 37, 84-92.	1.2	45
135	Communities Under Climate Change. Science, 2011, 334, 1070-1071.	12.6	45
136	Phylogeography: spanning the ecology $\hat{s} \in e$ volution continuum. Ecography, 2013, 36, 1169-1181.	4.5	45
137	Climate envelope models suggest spatioâ€ŧemporal coâ€occurrence of refugia of <scp>A</scp> frican birds and mammals. Clobal Ecology and Biogeography, 2013, 22, 351-363.	5.8	45
138	Using farmland prices to evaluate cost-efficiency of national versus regional reserve selection in Denmark. Biological Conservation, 2006, 128, 455-466.	4.1	44
139	Conservation implications of omitting narrowâ€ranging taxa from species distribution models, now and in the future. Diversity and Distributions, 2014, 20, 1307-1320.	4.1	44
140	Ecological mechanisms explaining interactions within plant–hummingbird networks: morphological matching increases towards lower latitudes. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192873.	2.6	44
141	A global mismatch in the protection of multiple marine biodiversity components and ecosystem services. Scientific Reports, 2018, 8, 4099.	3.3	43
142	Functional diversity mediates macroecological variation in plant–hummingbird interaction networks. Global Ecology and Biogeography, 2018, 27, 1186-1199.	5.8	43
143	A consistent species richness–climate relationship for oaks across the Northern Hemisphere. Global Ecology and Biogeography, 2019, 28, 1051-1066.	5.8	43
144	Title is missing!. Biodiversity and Conservation, 2003, 12, 1297-1320.	2.6	42

#	Article	IF	CITATIONS
145	Resource specialists lead local insect community turnover associated with temperature – analysis of an 18â€year fullâ€seasonal record of moths and beetles. Journal of Animal Ecology, 2016, 85, 251-261.	2.8	42
146	Unifying latitudinal gradients in range size and richness across marine and terrestrial systems. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20153027.	2.6	41
147	The influence of wing morphology upon the dispersal, geographical distributions and diversification of the Corvides (Aves; Passeriformes). Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161922.	2.6	40
148	DIVERSIFICATION AND BIOGEOGRAPHIC PATTERNS IN FOUR ISLAND RADIATIONS OF PASSERINE BIRDS. Evolution; International Journal of Organic Evolution, 2012, 66, 179-190.	2.3	38
149	A roadmap for global synthesis of the plant tree of life. American Journal of Botany, 2018, 105, 614-622.	1.7	38
150	Abundance drives broad patterns of generalisation in plant–hummingbird pollination networks. Oikos, 2019, 128, 1287-1295.	2.7	38
151	Influence of scale on conservation priority setting – a test on African mammals. Biodiversity and Conservation, 2003, 12, 599-614.	2.6	37
152	Abrupt Change in Climate and Biotic Systems. Current Biology, 2019, 29, R1045-R1054.	3.9	37
153	THE INFLUENCE OF BAND SUM AREA, DOMAIN EXTENT, AND RANGE SIZES ON THE LATITUDINAL MID-DOMAIN EFFECT. Ecology, 2005, 86, 235-244.	3.2	36
154	Bayesian geostatistical modelling of malaria and lymphatic filariasis infections in Uganda: predictors of risk and geographical patterns of co-endemicity. Malaria Journal, 2011, 10, 298.	2.3	36
155	How much of the vertebrate diversity of sub-Saharan Africa is catered for by recent conservation proposals?. Biological Conservation, 2002, 107, 327-339.	4.1	35
156	Breeding season food limitation drives population decline of the Little Owl <i>Athene noctua</i> in Denmark. Ibis, 2010, 152, 803-814.	1.9	35
157	The distributions of morphologically specialized hummingbirds coincide with floral trait matching across an Andean elevational gradient. Biotropica, 2019, 51, 205-218.	1.6	35
158	The midâ€domain effect matters: simulation analyses of rangeâ€size distribution data from Mount Kinabalu, Borneo. Journal of Biogeography, 2008, 35, 2138-2147.	3.0	32
159	High proportion of smaller ranged hummingbird species coincides with ecological specialization across the Americas. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152512.	2.6	32
160	Improving the Performance of Indicator Groups for the Identification of Important Areas for Species Conservation. Conservation Biology, 2007, 21, 731-740.	4.7	31
161	The influence of biogeographical and evolutionary histories on morphological traitâ€matching and resource specialization in mutualistic hummingbird–plant networks. Functional Ecology, 2021, 35, 1120-1133.	3.6	31
162	Effects of geographical extent on the determinants of woody plant diversity. Ecography, 2012, 35, 1160-1167.	4.5	30

#	Article	IF	CITATIONS
163	Amplified plant turnover in response to climate change forecast by Late Quaternary records. Nature Climate Change, 2016, 6, 1115-1119.	18.8	30
164	Phylogeography of a â€~great speciator' (Aves: <i>Edolisoma tenuirostre</i>) reveals complex dispersal and diversification dynamics across the Indoâ€Pacific. Journal of Biogeography, 2018, 45, 826-837.	3.0	30
165	Trait evolution, resource specialization and vulnerability to plant extinctions among Antillean hummingbirds. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172754.	2.6	30
166	Essential indicators for measuring siteâ€based conservation effectiveness in the postâ€2020 global biodiversity framework. Conservation Letters, 2021, 14, e12792.	5.7	29
167	Conservation policies and planning under climate change. Biological Conservation, 2011, 144, 2968-2977.	4.1	28
168	Does the colonization of new biogeographic regions influence the diversification and accumulation of clade richness among the Corvides (Aves: Passeriformes)?. Evolution; International Journal of Organic Evolution, 2017, 71, 38-50.	2.3	28
169	Conservation of species interactions to achieve selfâ€sustaining ecosystems. Ecography, 2020, 43, 1603-1611.	4.5	28
170	Elevational zonation of afrotropical forest bird communities along a homogeneous forest gradient. Journal of Biogeography, 2009, 36, 327-336.	3.0	27
171	Reconciling supertramps, great speciators and relict species with the taxon cycle stages of a large island radiation (Aves: Campephagidae). Journal of Biogeography, 2019, 46, 1214-1225.	3.0	26
172	Modelling the winter distribution of a rare and endangered migrant, the Aquatic Warbler Acrocephalus paludicola. Ibis, 2007, 149, 701-714.	1.9	25
173	Nodeâ€based analysis of species distributions. Methods in Ecology and Evolution, 2014, 5, 1225-1235.	5.2	25
174	Exposure of mammal genetic diversity to midâ€21st century global change. Ecography, 2021, 44, 817-831.	4.5	25
175	Response of an Afro-Palearctic bird migrant to glaciation cycles. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
176	Known and predicted African winter distributions and habitat use of the endangered Basra reed warbler (Acrocephalus griseldis) and the near-threatened cinereous bunting (Emberiza cineracea). Journal Fur Ornithologie, 2004, 145, 287-299.	1.2	24
177	Conserving biodiversity in a world of conflicts. Journal of Biogeography, 2007, 34, 199-200.	3.0	24
178	Assessing the Impacts of Future Climate Change on Protected Area Networks: A Method to Simulate Individual Species' Responses. Environmental Management, 2009, 43, 836-845.	2.7	24
179	The African migration and wintering grounds of the Aquatic Warbler Acrocephalus paludicola. Bird Conservation International, 2006, 16, 33.	1.3	23
180	Dispersion fields, diversity fields and null models: uniting range sizes and species richness. Ecography, 2010, 33, 402-407.	4.5	23

#	Article	IF	CITATIONS
181	ARE RANGE-SIZE DISTRIBUTIONS CONSISTENT WITH SPECIES-LEVEL HERITABILITY?. Evolution; International Journal of Organic Evolution, 2012, 66, 2216-2226.	2.3	23
182	Spatial behaviour of little owls (Athene noctua) in a declining low-density population in Denmark. Journal of Ornithology, 2009, 150, 537-548.	1.1	22
183	The functional biogeography of species: biogeographical species roles of birds in Wallacea and the West Indies. Ecography, 2013, 36, 1097-1105.	4.5	22
184	Biogeography and Biotic Assembly of Indo-Pacific Corvoid Passerine Birds. Annual Review of Ecology, Evolution, and Systematics, 2017, 48, 231-253.	8.3	22
185	Processâ€explicit models reveal pathway to extinction for woolly mammoth using patternâ€oriented validation. Ecology Letters, 2022, 25, 125-137.	6.4	22
186	A Quantitative Analysis of Biodiversity and the Recreational Value of Potential National Parks in Denmark. Environmental Management, 2008, 41, 685-695.	2.7	21
187	Weather Conditions Drive Dynamic Habitat Selection in a Generalist Predator. PLoS ONE, 2014, 9, e88221.	2.5	21
188	Spatial effects of artificial feeders on hummingbird abundance, floral visitation and pollen deposition. Journal of Ornithology, 2016, 157, 573-581.	1.1	21
189	Amphibian functional diversity is related to high annual precipitation and low precipitation seasonality in the New World. Global Ecology and Biogeography, 2019, 28, 1219-1229.	5.8	21
190	The value of biotic pollination and dense forest for fruit set of Arabica coffee: A global assessment. Agriculture, Ecosystems and Environment, 2022, 323, 107680.	5.3	21
191	The influence of spatial grain size on the suitability of the higher-taxon approach in continental priority-setting. Animal Conservation, 2005, 8, 389-396.	2.9	20
192	Public Support for Conserving Bird Species Runs Counter to Climate Change Impacts on Their Distributions. PLoS ONE, 2014, 9, e101281.	2.5	20
193	Determinants of bird species richness, endemism, and island network roles in Wallacea and the West Indies: is geography sufficient or does current and historical climate matter?. Ecology and Evolution, 2014, 4, 4019-4031.	1.9	20
194	Expansion in geographical and morphological space drives continued lineage diversification in a global passerine radiation. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20182181.	2.6	20
195	Niche dynamics of Palaeolithic modern humans during the settlement of the Palaearctic. Global Ecology and Biogeography, 2017, 26, 359-370.	5.8	19
196	A preliminary assessment of congruence between biodiversity patterns in Afrotropical forest birds and forest mammals. Ostrich, 2000, 71, 286-290.	1.1	18
197	Contrasting patterns of phylogenetic assemblage structure along the elevational gradient for major hummingbird clades. Journal of Biogeography, 2011, 38, 2350-2361.	3.0	18
198	Phytogeographic History of the Tea Family Inferred Through High-Resolution Phylogeny and Fossils. Systematic Biology, 2021, 70, 1256-1271.	5.6	18

#	Article	IF	CITATIONS
199	Conserving what, where and how? Cost-efficient measures to conserve biodiversity in Denmark. Journal for Nature Conservation, 2016, 29, 33-44.	1.8	17
200	Environmental variation is a major predictor of global trait turnover in mammals. Journal of Biogeography, 2018, 45, 225-237.	3.0	17
201	Adaptive radiation and the evolution of nectarivory in a large songbird clade. Evolution; International Journal of Organic Evolution, 2019, 73, 1226-1240.	2.3	16
202	From fledging to breeding: Longâ€ŧerm satellite tracking of the migratory behaviour of a Lesser Blackâ€backed GullLarus fuscus intermedius. Ringing and Migration, 2008, 24, 7-10.	0.4	15
203	Predicting future shifts in species diversity. Ecography, 2009, 32, 3-4.	4.5	15
204	Species loss revisited. Nature, 2011, 473, 288-289.	27.8	15
205	Response to Comment on "An Update of Wallace's Zoogeographic Regions of the World― Science, 2013, 341, 343-343.	12.6	15
206	Breeding system evolution influenced the geographic expansion and diversification of the core Corvoidea (Aves: Passeriformes). Evolution; International Journal of Organic Evolution, 2015, 69, 1874-1924.	2.3	15
207	Prevalence of intraspecific relationships between range size and abundance in Danish birds. Diversity and Distributions, 2006, 12, 417-422.	4.1	14
208	Relative effectiveness of insects <i>versus</i> hummingbirds as pollinators of Rubiaceae plants across elevation in Dominica, Caribbean. Plant Biology, 2019, 21, 738-744.	3.8	14
209	Extinction, coextinction and colonization dynamics in plant–hummingbird networks under climate change. Nature Ecology and Evolution, 2022, 6, 720-729.	7.8	14
210	Effects of summer weather on reproductive success of the Red-backed Shrike (<i>Lanius collurio</i>). Bird Study, 2013, 60, 1-10.	1.0	12
211	Cradles of diversity are unlikely relics of regional climate stability. Current Biology, 2019, 29, R356-R357.	3.9	12
212	The association between morphological and ecological characters across a global passerine radiation. Journal of Animal Ecology, 2020, 89, 1094-1108.	2.8	12
213	Evolutionary diversification in the marine realm: a global case study with marine mammals. Frontiers of Biogeography, 2020, 12, .	1.8	12
214	Advancing impact assessments of non-native species: strategies for strengthening the evidence-base. NeoBiota, 0, 51, 41-64.	1.0	12
215	Does taxonomic diversity in indicator groups influence their effectiveness in identifying priority areas for species conservation?. Animal Conservation, 2008, 11, 546-554.	2.9	11
216	Seasonal survival rates and causes of mortality of Little Owls in Denmark. Journal of Ornithology, 2013, 154, 183-190.	1.1	11

#	Article	IF	CITATIONS
217	Potential for invasion of traded birds under climate and landâ€cover change. Global Change Biology, 2022, 28, 5654-5666.	9.5	11
218	NCBIminer: sequences harvest from Genbank. Ecography, 2015, 38, 426-430.	4.5	9
219	Speciose opportunistic nectar-feeding avifauna in Cuba and its association to hummingbird island biogeography. Journal of Ornithology, 2016, 157, 627-634.	1.1	9
220	Separate authorship categories to recognize data collectors and code developers. Nature Ecology and Evolution, 2019, 3, 1610-1610.	7.8	9
221	Quality of substrate and forest structure determine macrofungal richness along a gradient of management intensity in beech forests. Forest Ecology and Management, 2020, 478, 118512.	3.2	9
222	Dispersion fields reveal the compositional structure of South American vertebrate assemblages. Nature Communications, 2020, 11, 491.	12.8	9
223	The silence of the robins. Nature, 2007, 447, 652-653.	27.8	8
224	The neglected geography of human pathogens and diseases. Nature Ecology and Evolution, 2017, 1, 190.	7.8	8
225	Speciesâ€specific environmental preferences associated with a humpâ€shaped diversity/temperature relationship across tropical marine fish assemblages. Journal of Biogeography, 2017, 44, 2343-2353.	3.0	8
226	Effects of phylogeny and geography on ecomorphological traits in passerine bird clades. Journal of Biogeography, 2018, 45, 2337-2347.	3.0	8
227	Historical limits on species coâ€occurrence determine variation in clade richness among New World passerine birds. Journal of Biogeography, 2017, 44, 736-747.	3.0	7
228	Testing biodiversity theory using species richness of reef-building corals across a depth gradient. Biology Letters, 2019, 15, 20190493.	2.3	7
229	A tale of two seasons: The link between seasonal migration and climatic niches in passerine birds. Ecology and Evolution, 2020, 10, 11983-11997.	1.9	7
230	Mapping Afrotropical birds: links between atlas studies and conservation priority analyses. Bulletin of the African Bird Club, 1997, 4, 93-98.	0.1	7
231	IUCN Red List protects avian genetic diversity. Ecography, 2021, 44, 1808-1811.	4.5	7
232	Long-term trends in the occupancy of ants revealed through use of multi-sourced datasets. Biology Letters, 2021, 17, 20210240.	2.3	6
233	Behavioural and morphological traits influence sexâ€specific floral resource use by hummingbirds. Journal of Animal Ecology, 2022, 91, 2171-2180.	2.8	6
234	Peripheral ecoâ€morphology predicts restricted lineage diversification and endemism among corvoid passerine birds. Global Ecology and Biogeography, 2021, 30, 79-98.	5.8	5

#	Article	IF	CITATIONS
235	Variation in Working Effort in Danish Little Owls <i>Athene noctua</i> . Ardea, 2009, 97, 547-554.	0.6	4
236	Associations between patterns of human intestinal schistosomiasis and snail and mammal species richness in Uganda: can we detect a decoy effect?. Frontiers of Biogeography, 2016, 8, .	1.8	4
237	Mechanism, Process, and Causation in Ecological Models: A Reply to McGill and Potochnik. Trends in Ecology and Evolution, 2018, 33, 305-306.	8.7	2
238	Using NCBIminer to search and download nucleotide sequences from GenBank. Biodiversity Science, 2015, 23, 550-555.	0.6	1
239	Celebrating the diversity of biogeographical research. Ecography, 2010, 33, 209-211.	4.5	0
240	Priorities for conservation in Bolivia, Illustrated by a continent-wide analysis of bird distributions. , 2001, , 313-327.		0
241	Cover Image: Volume 25 Number 3, March 2022. Ecology Letters, 2022, 25, .	6.4	0