Amm Sharif Ullah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9376218/publications.pdf Version: 2024-02-01

		448610	445137
110	1,469	19	33
papers	citations	h-index	g-index
112	112	112	1194
all docs	docs citations	times ranked	citing authors

AMM SHADIE IIIIAH

#	Article	IF	CITATIONS
1	Current Development and Future Perspective on Natural Jute Fibers and Their Biocomposites. Polymers, 2022, 14, 1445.	2.0	32
2	Decision-Making Using Big Data Relevant to Sustainable Development Goals (SDGs). Big Data and Cognitive Computing, 2022, 6, 64.	2.9	5
3	A study on unit-cell-based porous structure design and manufacturing. The Proceedings of Manufacturing Systems Division Conference, 2021, 2021, 501.	0.0	Ο
4	3D Printing of Complex Shapes by Creating SLT Data Directly from a Point Cloud. The Proceedings of Manufacturing Systems Division Conference, 2021, 2021, 502.	0.0	0
5	A Sustainable Reverse Engineering Process. Procedia CIRP, 2021, 98, 517-522.	1.0	13
6	On the Porous Structuring using Unit Cells. Procedia CIRP, 2021, 99, 381-386.	1.0	2
7	Optimizing 3D Printed Metallic Object's Postprocessing: A Case of Gamma-TiAl Alloys. Materials, 2021, 14, 1246.	1.3	6
8	Utilizing Fractals for Modeling and 3D Printing of Porous Structures. Fractal and Fractional, 2021, 5, 40.	1.6	12
9	Determining Surface Topography of a Dressed Grinding Wheel Using Bio-Inspired DNA-Based Computing. Materials, 2021, 14, 1899.	1.3	5
10	Developing sensor signal-based digital twins for intelligent machine tools. Journal of Industrial Information Integration, 2021, 24, 100242.	4.3	30
11	Consideration of sustainable reverse engineering process based on system efficiency and its effectiveness. The Proceedings of Manufacturing Systems Division Conference, 2021, 2021, 303.	0.0	0
12	Preparing Datasets of Surface Roughness for Constructing Big Data from the Context of Smart Manufacturing and Cognitive Computing. Big Data and Cognitive Computing, 2021, 5, 58.	2.9	9
13	Time Latency-Centric Signal Processing: A Perspective of Smart Manufacturing. Sensors, 2021, 21, 7336.	2.1	3
14	Semantic Annotation-based Knowledge Representation for Smart Manufacturing: A Case of Experimental Results. Proceedings of International Conference on Leading Edge Manufacturing in 21st Century LEM21, 2021, 2021.10, 011-040.	0.0	0
15	Developing Successful Biobased Product: Key Design and Manufacturing Challenges. , 2020, , 727-735.		0
16	Resilient supplier selection in logistics 4.0 with heterogeneous information. Expert Systems With Applications, 2020, 139, 112799.	4.4	74
17	Concept Map and Knowledge. Education Sciences, 2020, 10, 246.	1.4	2
18	What is knowledge in Industry 4.0?. Engineering Reports, 2020, 2, e12217.	0.9	21

#	Article	IF	CITATIONS
19	Tutorials for Integrating 3D Printing in Engineering Curricula. Education Sciences, 2020, 10, 194.	1.4	6
20	A system for designing and 3D printing of porous structures. CIRP Annals - Manufacturing Technology, 2020, 69, 113-116.	1.7	9
21	Developing a Human-Cognition-Based Reverse Engineering Approach. , 2020, , .		1
22	Machining Phenomenon Twin Construction for Industry 4.0: A Case of Surface Roughness. Journal of Manufacturing and Materials Processing, 2020, 4, 11.	1.0	15
23	Geometric Modeling and 3D Printing Using Recursively Generated Point Cloud. Mathematical and Computational Applications, 2019, 24, 83.	0.7	3
24	Symmetrical Patterns of Ainu Heritage and Their Virtual and Physical Prototyping. Symmetry, 2019, 11, 985.	1.1	5
25	Fundamental Issues of Concept Mapping Relevant to Discipline-Based Education: A Perspective of Manufacturing Engineering. Education Sciences, 2019, 9, 228.	1.4	11
26	Hidden Markov model-based digital twin construction for futuristic manufacturing systems. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2019, 33, 317-331.	0.7	54
27	Modeling and simulation of complex manufacturing phenomena using sensor signals from the perspective of Industry 4.0. Advanced Engineering Informatics, 2019, 39, 1-13.	4.0	66
28	Big data driven graphical information based fuzzy multi criteria decision making. Applied Soft Computing Journal, 2018, 63, 23-38.	4.1	18
29	Design for additive manufacturing of porous structures using stochastic point-cloud: a pragmatic approach. Computer-Aided Design and Applications, 2018, 15, 138-146.	0.4	12
30	Machining Forces Due to Turning of Bimetallic Objects Made of Aluminum, Titanium, Cast Iron, and Mild/Stainless Steel. Journal of Manufacturing and Materials Processing, 2018, 2, 68.	1.0	6
31	Tutorials for Integrating CAD/CAM in Engineering Curricula. Education Sciences, 2018, 8, 151.	1.4	14
32	Analytical Point-Cloud Based Geometric Modeling for Additive Manufacturing and Its Application to Cultural Heritage Preservation. Applied Sciences (Switzerland), 2018, 8, 656.	1.3	19
33	Elucidating Grinding Mechanism by Theoretical and Experimental Investigations. Materials, 2018, 11, 274.	1.3	17
34	Special Issue on Intelligent Computation in Design and Manufacturing. International Journal of Automation Technology, 2018, 12, 273-274.	0.5	2
35	Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing. Journal of Intelligent Manufacturing, 2017, 28, 1285-1301.	4.4	110
36	Preparation of lidocaine-loaded porous Poly (lactic-co-glycolic acid) microparticles using microfluidic flow focusing and phosphate buffer solution porogen. International Journal of Precision Engineering and Manufacturing, 2017, 18, 599-604.	1.1	7

#	Article	IF	CITATIONS
37	Quantifying the Uncertainty Associated with the Material Properties of a Natural Fiber. Procedia CIRP, 2017, 61, 541-546.	1.0	13
38	Emergent Methodology for Solving Tool Inventory Sizing Problems in a Complex Production System. Procedia CIRP, 2017, 62, 111-116.	1.0	1
39	A decision model for making decisions under epistemic uncertainty and its application to select materials. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2017, 31, 298-312.	0.7	12
40	A Fuzzy Monte Carlo Simulation Technique for Sustainable Society Scenario (3S) Simulator. Ecoproduction, 2017, , 601-618.	0.8	2
41	On the Mechanical Properties and Uncertainties of Jute Yarns. Materials, 2017, 10, 450.	1.3	15
42	Drilling High Precision Holes in Ti6Al4V Using Rotary Ultrasonic Machining and Uncertainties Underlying Cutting Force, Tool Wear, and Production Inaccuracies. Materials, 2017, 10, 1069.	1.3	12
43	Surface Roughness Modeling Using Q-Sequence. Mathematical and Computational Applications, 2017, 22, 33.	0.7	10
44	A Possibilistic Approach for Aggregating Customer Opinions in Product Development. Systems, 2016, 4, 17.	1.2	0
45	On the interplay of manufacturing engineering education and e-learning. International Journal of Mechanical Engineering Education, 2016, 44, 233-254.	0.6	4
46	Integrating CAD, TRIZ, and Customer Needs. International Journal of Automation Technology, 2016, 10, 132-143.	0.5	15
47	Fractals and Additive Manufacturing. International Journal of Automation Technology, 2016, 10, 222-230.	0.5	13
48	Strategies for Developing Milling Tools from the Viewpoint of Sustainable Manufacturing. International Journal of Automation Technology, 2016, 10, 727-736.	0.5	6
49	Creating concave hull for IFS fractals using DNA-based computing. Fractal Geometry and Nonlinear Analysis in Medicine and Biology, 2016, 1, .	0.3	Ο
50	Special Issue on Digital Engineering for Complex Shapes. International Journal of Automation Technology, 2016, 10, 131-131.	0.5	0
51	In Silico DNA computing. International Journal of Swarm Intelligence and Evolutionsary Computation, 2015, 04, .	0.4	Ο
52	Design for Manufacturing of IFS Fractals from the Perspective of Barnsley's Fern-leaf. Computer-Aided Design and Applications, 2015, 12, 241-255.	0.4	10
53	On the Surface Metrology of Bimetallic Components. Machining Science and Technology, 2015, 19, 339-359.	1.4	16
54	Tool Wear Control through Cognitive Paradigms. Procedia CIRP, 2015, 33, 221-226.	1.0	25

#	Article	IF	CITATIONS
55	Remodeling Fractals. Fractal Geometry and Nonlinear Analysis in Medicine and Biology, 2015, 1, .	0.3	о
56	2302 On the complexity in roughness quantification across bimetallic boundary. Proceedings of International Conference on Leading Edge Manufacturing in 21st Century LEM21, 2015, 2015.8, _2302-12302-6	0.0	0
57	Computing Perceptions in a Formal Manner. Journal of Computer Engineering and Information Technology, 2015, 04, .	0.1	0
58	Decision-making under Uncertainty using Point-Cloud. Industrial Engineering & Management, 2015, 04, .	0.1	0
59	1602 Cutting force signal processing for machining bimetallic components. Proceedings of International Conference on Leading Edge Manufacturing in 21st Century LEM21, 2015, 2015.8, _1602-11602-6	0.0	1
60	DNA based computing for understanding complex shapes. BioSystems, 2014, 117, 40-53.	0.9	20
61	Wear characteristics of nano-polycrystalline diamond tool in cutting of tungsten carbide. International Journal of Mechatronics and Manufacturing Systems, 2014, 7, 227.	0.1	5
62	Analyzing the Sustainability of Bimetallic Components. International Journal of Automation Technology, 2014, 8, 745-753.	0.5	15
63	Concept Map and Internet-aided Manufacturing. Procedia CIRP, 2013, 12, 378-383.	1.0	12
64	Toward Error-free Manufacturing of Fractals. Procedia CIRP, 2013, 12, 43-48.	1.0	9
65	Optimal Design for Improved Hybrid Kinematic Machine Tools Structures. Procedia CIRP, 2013, 12, 109-114.	1.0	4
66	Fuzzy Monte Carlo Simulation using point-cloud-based probability–possibility transformation. Simulation, 2013, 89, 860-875.	1.1	32
67	A fuzzy decision model for the selection of coals for industrial use. International Journal of Industrial and Systems Engineering, 2013, 14, 230.	0.1	7
68	Sustainability analysis of rapid prototyping: material/resource and process perspectives. International Journal of Sustainable Manufacturing, 2013, 3, 20.	0.3	30
69	Computer-aided Simulation of Rotary Diamond Dressing Based on Kinematic Analysis. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2013, 7, 506-520.	0.3	10
70	3D Reproduction of a Snow Crystal by Stereolithography. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2012, 6, 923-935.	0.3	6
71	On some unique features of C–K theory of design. CIRP Journal of Manufacturing Science and Technology, 2012, 5, 55-66.	2.3	37
72	Comparison between Wooden and Conventional Prototyping:An Eco-Manufacturing Perspective. , 2012, , 877-881.		2

#	Article	IF	CITATIONS
73	A Kano Model Based Linguistic Application for Customer Needs Analysis. International Journal of Engineering Business Management, 2011, 3, 12.	2.1	7
74	A proposed computer system on Kano model for new product development and innovation aspect: A case study is conducted by an attractive attribute of automobile. International Journal of Engineering, Science and Technology, 2011, 2, .	0.3	2
75	Analysis of Kanoâ€modelâ€based customer needs for product development. Systems Engineering, 2011, 14, 154-172.	1.6	77
76	A decision-making approach using point-cloud-based granular information. Applied Soft Computing Journal, 2011, 11, 2576-2586.	4.1	7
77	Algorithms for fuzzy multi expert multi criteria decision making (ME-MCDM). Knowledge-Based Systems, 2011, 24, 367-377.	4.0	58
78	Wear Characteristics of Various Diamond Tools in Cutting of Tungsten Carbide. Advanced Materials Research, 2011, 325, 153-158.	0.3	2
79	On Some Eco-Indicators of Cutting Tools. , 2011, , .		7
80	3290 3D Reproduction of a Snow Crystal by Stereolithography. Proceedings of International Conference on Leading Edge Manufacturing in 21st Century LEM21, 2011, 2011.6, _3290-13290-4	0.0	1
81	A Numerical Kano Model for Compliance Customer Needs with Product Development. Industrial Engineering and Management Systems, 2011, 10, 140-153.	0.3	9
82	Simulation of cutting force using nonstationary Gaussian process. Journal of Intelligent Manufacturing, 2010, 21, 681-691.	4.4	20
83	A DNA-based computing method for solving control chart pattern recognition problems. CIRP Journal of Manufacturing Science and Technology, 2010, 3, 293-303.	2.3	14
84	Effect of Wheel Arrangement on Ground Surface Topography in Horizontal-Axis-Type Rotary Surface Grinding. Advanced Materials Research, 2010, 126-128, 579-584.	0.3	2
85	Elastic and Plastic Behaviors in Ductile-Regime Machining Process of Quartz Glass. Advanced Materials Research, 2010, 126-128, 235-240.	0.3	0
86	2A2-G04 A Human Comprehensible Machine Learning Method. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2010, 2010, _2A2-G04_12A2-G04_3.	0.0	0
87	Application of Axiomatic Design Principles for Process Planning in Milling. , 2009, , .		2
88	An intelligent method for selecting optimal materials and its application. Advanced Engineering Informatics, 2008, 22, 473-483.	4.0	48
89	Supplier evaluation with GD-based multi criteria decision making. International Journal of Industrial and Systems Engineering, 2008, 3, 368.	0.1	10
90	Logical interaction between domain knowledge and human cognition in design. International Journal of Manufacturing Technology and Management, 2008, 14, 215.	0.1	14

#	Article	IF	CITATIONS
91	Minimizing Information Content of a Design using Compliance Analysis. , 2007, , .		7
92	A hexapod-based machine tool with hybrid structure: Kinematic analysis and trajectory planning. International Journal of Machine Tools and Manufacture, 2007, 47, 1426-1432.	6.2	50
93	A human-assisted knowledge extraction method for machining operations. Advanced Engineering Informatics, 2006, 20, 335-350.	4.0	33
94	On the Effective Teaching of CAD/CAM at the Undergraduate Level. Computer-Aided Design and Applications, 2006, 3, 331-339.	0.4	5
95	Handling design perceptions: an axiomatic design perspective. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2005, 16, 109-117.	1.2	20
96	Manufacturing process performance prediction by integrating crisp and granular information. Journal of Intelligent Manufacturing, 2005, 16, 317-330.	4.4	16
97	A fuzzy decision model for conceptual design. Systems Engineering, 2005, 8, 296-308.	1.6	40
98	Different facets of a computational equivalent of genetic addition. BioSystems, 2003, 68, 31-41.	0.9	4
99	Applying linguistic criteria in FMS selection: fuzzyâ€setâ€AHP approach. Journal of Manufacturing Technology Management, 2003, 14, 247-254.	0.5	42
100	Protein Synthesis Algorithm and a New Metaphor for Selecting Optimum Tools JSME International Journal Series C-Mechanical Systems Machine Elements and Manufacturing, 1997, 40, 540-546.	0.3	5
101	Intelligent Computation of Imprecise Information for Engineering Design. , 0, , .		Ο
102	Axiomatic Design of Hexapod-based Machine Tool Structures. , 0, , .		2
103	Modeling and Simulation of 3D Surface Finish of Grinding. Advanced Materials Research, 0, 126-128, 672-677.	0.3	9
104	Evaluation of Hard Materials Using Eco-Attributes. Advanced Materials Research, 0, 325, 693-698.	0.3	7
105	Performance of Newly Developed Single-Point Diamond Dresser in Terms of Cutting-Point Rake Angle. Advanced Materials Research, 0, 565, 205-210.	0.3	2
106	Visualization of Grinding Wheel Surface Topography for Multiple Passes of Rotary Diamond Dresser. Advanced Materials Research, 0, 565, 222-227.	0.3	3
107	Visualization of 3D Topography of Grinding Wheel Surface Dressed by Rotary Diamond Dresser. Advanced Materials Research, 0, 797, 751-756.	0.3	5
108	Computer-Aided Simulation of Dressing Using Diamond Rotary Dresser and Visualization of Dressing Process. Advanced Materials Research, 0, 1017, 592-597.	0.3	3

0

#	Article	IF	CITATIONS
109	A Surface Generation Mechanism of Grinding. Applied Mechanics and Materials, 0, 860, 13-18.	0.2	2

Design for Manufacturing of IFS Fractals from the Perspective of Barnsley's Fern-leaf., 0,,.