
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9376171/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A critical review of the ultrastructure, mechanics and modelling of flax fibres and their defects. Progress in Materials Science, 2022, 124, 100851.	16.0	30
2	Evolution of the flax cell wall composition during development and after gravitropism by synchrotron fluorescence imaging. Industrial Crops and Products, 2022, 175, 114256.	2.5	6
3	Can we predict the microstructure of a non-woven flax/PLA composite through assessment of anisotropy in tensile properties?. Composites Science and Technology, 2022, 218, 109173.	3.8	4
4	Exploring the impact of Verticillium wilt disease on the mechanical properties of elementary flax (Linum usitatissimum L.) fibres. Industrial Crops and Products, 2022, 182, 114900.	2.5	0
5	Influence of water ageing on the mechanical properties of flax/PLA non-woven composites. Polymer Degradation and Stability, 2022, 200, 109957.	2.7	12
6	Evolution of the ultrastructure and polysaccharide composition of flax fibres over time: When history meets science. Carbohydrate Polymers, 2022, 291, 119584.	5.1	17
7	Impact of cell wall non-cellulosic and cellulosic polymers on the mechanical properties of flax fibre bundles. Carbohydrate Polymers, 2022, 291, 119599.	5.1	5
8	Elucidating the formation of structural defects in flax fibres through synchrotron X-ray phase-contrast microtomography. Industrial Crops and Products, 2022, 184, 115048.	2.5	8
9	Anticipating global warming effects: A comprehensive study of drought impact of both flax plants and fibres. Industrial Crops and Products, 2022, 184, 115011.	2.5	6
10	Interfacial and mechanical characterisation of biodegradable polymer-flax fibre composites. Composites Science and Technology, 2021, 201, 108529.	3.8	36
11	Multiscale Structure of Plant Fibers. , 2021, , 117-134.		2
12	Use of Nanoindentation to Mechanically Characterized Polypropylene/Cloisite 15A Nanocomposites Films Exposed to Gammaâ€Irradiation. Macromolecular Symposia, 2021, 396, 2000219.	0.4	2
13	Novel Insight into the Intricate Shape of Flax Fibre Lumen. Fibers, 2021, 9, 24.	1.8	21
14	Eighty years of composites reinforced by flax fibres: A historical review. Composites Part A: Applied Science and Manufacturing, 2021, 144, 106333.	3.8	50
15	Exploring the dew retting feasibility of hemp in very contrasting European environments: Influence on the tensile mechanical properties of fibres and composites. Industrial Crops and Products, 2021, 164, 113337.	2.5	24
16	Extensive investigation of the ultrastructure of kink-bands in flax fibres. Industrial Crops and Products, 2021, 164, 113368.	2.5	24
17	Fibre Individualisation and Mechanical Properties of a Flax-PLA Non-Woven Composite Following Physical Pre-Treatments. Coatings, 2021, 11, 846.	1.2	4
18	Investigations by AFM of Ageing Mechanisms in PLA-Flax Fibre Composites during Garden Composting. Polymers, 2021, 13, 2225.	2.0	8

#	Article	IF	CITATIONS
19	Flax shives-PBAT processing into 3D printed fluorescent materials with potential sensor functionalities. Industrial Crops and Products, 2021, 167, 113482.	2.5	6
20	Recycling of wood-reinforced poly-(propylene) composites: A numerical and experimental approach. Industrial Crops and Products, 2021, 167, 113518.	2.5	6
21	Lessons on textile history and fibre durability from a 4,000-year-old Egyptian flax yarn. Nature Plants, 2021, 7, 1200-1206.	4.7	10
22	Flax xylem as composite material reinforcement: Microstructure and mechanical properties. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106550.	3.8	6
23	Chemical, morphological and mechanical study of the ageing of textile flax fibers from 17th/18th-century paintings on canvas. Journal of Cultural Heritage, 2021, 52, 202-214.	1.5	7
24	Bio-based unidirectional composite made of flax fibre and isosorbide-based epoxy resin. Materials Letters, 2020, 258, 126818.	1.3	31
25	A review on alfa fibre (Stipa tenacissima L.): From the plant architecture to the reinforcement of polymer composites. Composites Part A: Applied Science and Manufacturing, 2020, 128, 105677.	3.8	49
26	Unravelling the consequences of ultra-fine milling on physical and chemical characteristics of flax fibres. Powder Technology, 2020, 360, 129-140.	2.1	12
27	Variability of mechanical properties of flax fibres for composite reinforcement. A review. Industrial Crops and Products, 2020, 145, 111984.	2.5	102
28	Microfibril angle of elementary flax fibres investigated with polarised second harmonic generation microscopy. Industrial Crops and Products, 2020, 156, 112847.	2.5	16
29	Transdisciplinary top-down review of hemp fibre composites: From an advanced product design to crop variety selection. Composites Part C: Open Access, 2020, 2, 100010.	1.5	20
30	A Review of Permeability and Flow Simulation for Liquid Composite Moulding of Plant Fibre Composites. Materials, 2020, 13, 4811.	1.3	15
31	Determinant morphological features of flax plant products and their contribution in injection moulded composite reinforcement. Composites Part C: Open Access, 2020, 3, 100054.	1.5	2
32	The potential of flax shives as reinforcements for injection moulded polypropylene composites. Industrial Crops and Products, 2020, 148, 112324.	2.5	27
33	Multi-scale mechanical characterization of flax fibres for the reinforcement of composite materials. , 2020, , 205-226.		1
34	Property changes in plant fibres during the processing of bio-based composites. Industrial Crops and Products, 2020, 154, 112705.	2.5	57
35	Monitoring of mechanical performances of flax non-woven biocomposites during a home compost degradation. Polymer Degradation and Stability, 2020, 177, 109166.	2.7	37
36	Oriented granulometry to quantify fibre orientation distributions in synthetic and plant fibre composite preforms. Industrial Crops and Products, 2020, 152, 112548.	2.5	11

#	Article	IF	CITATIONS
37	The Middle Lamella of Plant Fibers Used as Composite Reinforcement: Investigation by Atomic Force Microscopy. Molecules, 2020, 25, 632.	1.7	39
38	Main criteria of sustainable natural fibre for efficient unidirectional biocomposites. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105504.	3.8	17
39	About the frontier between filling and reinforcement by fine flax particles in plant fibre composites. Industrial Crops and Products, 2019, 141, 111774.	2.5	10
40	Interfacial properties of hemp fiber/epoxy system measured by microdroplet test: Effect of relative humidity. Composites Science and Technology, 2019, 181, 107694.	3.8	20
41	Understanding the effect of moisture variation on the hygromechanical properties of porosity-controlled nonwoven biocomposites. Polymer Testing, 2019, 78, 105944.	2.3	29
42	Beating of hemp bast fibres: an examination of a hydro-mechanical treatment on chemical, structural, and nanomechanical property evolutions. Cellulose, 2019, 26, 5665-5683.	2.4	11
43	Deeper insights into the moisture-induced hygroscopic and mechanical properties of hemp reinforced biocomposites. Composites Part A: Applied Science and Manufacturing, 2019, 123, 278-285.	3.8	24
44	Exploring mechanical properties of fully compostable flax reinforced composite filaments for 3D printing applications. Industrial Crops and Products, 2019, 135, 246-250.	2.5	52
45	Flax (Linum usitatissimum L.) Fibers for Composite Reinforcement: Exploring the Link Between Plant Growth, Cell Walls Development, and Fiber Properties. Frontiers in Plant Science, 2019, 10, 411.	1.7	78
46	Specific features of flax fibres used to manufacture composite materials. International Journal of Material Forming, 2019, 12, 1023-1052.	0.9	53
47	Compressive strength of flax fibre bundles within the stem and comparison with unidirectional flax/epoxy composites. Industrial Crops and Products, 2019, 130, 25-33.	2.5	25
48	The remarkable slenderness of flax plant and pertinent factors affecting its mechanical stability. Biosystems Engineering, 2019, 178, 1-8.	1.9	24
49	Study of plant gravitropic response: Exploring the influence of lodging and recovery on the mechanical performances of flax fibers. Industrial Crops and Products, 2019, 128, 235-238.	2.5	9
50	Evolution of flax cell wall ultrastructure and mechanical properties during the retting step. Carbohydrate Polymers, 2019, 206, 48-56.	5.1	40
51	Hygroscopic and Mechanical Properties of Hemp Fibre Reinforced Biocomposites. Revue Des Composites Et Des Materiaux Avances, 2019, 29, 253-260.	0.2	2
52	Influence of the Nonwoven Biocomposite's Microstructure on Its Hygromechanical Behaviour. Revue Des Composites Et Des Materiaux Avances, 2019, 29, 215-224.	0.2	2
53	Quality of the Multi-scale Interphase of Hemp Stems: Retting Effect. Revue Des Composites Et Des Materiaux Avances, 2019, 29, 283-291.	0.2	0
54	Exploring the link between flexural behaviour of hemp and flax stems and fibre stiffness. Industrial Crops and Products, 2018, 113, 179-186.	2.5	29

#	Article	IF	CITATIONS
55	Flax and hemp nonwoven composites: The contribution of interfacial bonding to improving tensile properties. Polymer Testing, 2018, 66, 303-311.	2.3	37
56	Flax stems: from a specific architecture to an instructive model for bioinspired composite structures. Bioinspiration and Biomimetics, 2018, 13, 026007.	1.5	30
57	Polypropylene reinforcement with flax or jute fibre; Influence of microstructure and constituents properties on the performance of composite. Composites Part B: Engineering, 2018, 139, 64-74.	5.9	59
58	Mechanical properties of leaf sheath date palm fibre waste biomass reinforced polycaprolactone (PCL) biocomposites. Industrial Crops and Products, 2018, 126, 394-402.	2.5	62
59	Towards the design of high-performance plant fibre composites. Progress in Materials Science, 2018, 97, 347-408.	16.0	295
60	Monitoring temperature effects on flax cell-wall mechanical properties within a composite material using AFM. Polymer Testing, 2018, 69, 91-99.	2.3	17
61	Conventional or greenhouse cultivation of flax: What influence on the number and quality of flax fibers?. Industrial Crops and Products, 2018, 123, 111-117.	2.5	13
62	Investigation of the Mechanical Properties of Flax Cell Walls during Plant Development: The Relation between Performance and Cell Wall Structure. Fibers, 2018, 6, 6.	1.8	45
63	Tensile properties of flax fibers. , 2018, , 275-300.		11
64	Compressive and tensile behaviour of unidirectional composites reinforced by natural fibres: Influence of fibres (flax and jute), matrix and fibre volume fraction. Materials Today Communications, 2018, 16, 300-306.	0.9	46
65	Peeling experiments for hemp retting characterization targeting biocomposites. Industrial Crops and Products, 2018, 123, 573-580.	2.5	28
66	Innovating routes for the reused of PP-flax and PP-glass non woven composites: A comparative study. Polymer Degradation and Stability, 2018, 152, 259-271.	2.7	10
67	Influence of the scattering of flax fibres properties on flax/epoxy woven ply stiffness. Materials and Design, 2017, 122, 136-145.	3.3	31
68	Exploring the mechanical performance and in-planta architecture of secondary hemp fibres. Industrial Crops and Products, 2017, 108, 1-5.	2.5	20
69	Better insight into the nano-mechanical properties of flax fibre cell walls. Industrial Crops and Products, 2017, 97, 224-228.	2.5	66
70	Influence of PA11 and PP thermoplastic polymers on recycling stability of unidirectional flax fibre reinforced biocomposites. Polymer Degradation and Stability, 2017, 136, 1-9.	2.7	44
71	Varietal selection of flax over time: Evolution of plant architecture related to influence on the mechanical properties of fibers. Industrial Crops and Products, 2017, 97, 56-64.	2.5	46
72	Exploring the potential of waste leaf sheath date palm fibres for composite reinforcement through a structural and mechanical analysis. Composites Part A: Applied Science and Manufacturing, 2017, 103, 292-303.	3.8	47

#	Article	IF	CITATIONS
73	Hygroscopic expansion: A key point to describe natural fibre/polymer matrix interface bond strength. Composites Science and Technology, 2017, 151, 228-233.	3.8	60
74	Recyclability assessment of poly(3-hydroxybutyrate- co -3-hydroxyvalerate)/poly(butylene succinate) blends: Combined influence of sepiolite and compatibilizer. Polymer Degradation and Stability, 2017, 142, 234-243.	2.7	16
75	Exploring two innovative recycling ways for poly-(propylene)-flax non wovens wastes. Polymer Degradation and Stability, 2017, 142, 89-101.	2.7	20
76	Is the low shear modulus of flax fibres an advantage for polymer reinforcement?. Materials Letters, 2016, 185, 534-536.	1.3	20
77	Damage analysis of composites reinforced with Alfa fibers: Viscoelastic behavior and debonding at the fiber/matrix interface. Journal of Applied Polymer Science, 2016, 133, .	1.3	21
78	Recycling of L-Poly-(lactide)-Poly-(butylene-succinate)-flax biocomposite. Polymer Degradation and Stability, 2016, 128, 77-88.	2.7	42
79	Number of processing cycle effect on the properties of the composites based on alfa fiber. Journal of Thermoplastic Composite Materials, 2016, 29, 1176-1193.	2.6	10
80	Mechanical and acoustic behaviour of porosity controlled randomly dispersed flax/PP biocomposite. Polymer Testing, 2016, 51, 174-180.	2.3	58
81	Multi-scale shear properties of flax fibre reinforced polyamide 11 biocomposites. Composites Part A: Applied Science and Manufacturing, 2016, 85, 123-129.	3.8	35
82	Influence of processing temperature on mechanical performance of unidirectional polyamide 11–flax fibre composites. Industrial Crops and Products, 2016, 84, 151-165.	2.5	79
83	Flax/PP manufacture by automated fibre placement (AFP). Materials and Design, 2016, 94, 207-213.	3.3	23
84	Plant cell walls to reinforce composite materials: Relationship between nanoindentation and tensile modulus. Materials Letters, 2016, 167, 161-164.	1.3	30
85	Influence of Stem Morphology and Fibers Stiffness on the Loading Stability of Flax. RILEM Bookseries, 2016, , 49-59.	0.2	2
86	Impact of the seeding rate on flax stem stability and the mechanical properties of elementary fibres. Industrial Crops and Products, 2016, 80, 17-25.	2.5	36
87	Gamma irradiation effects on morphology and properties of PHBV/PLA blends in presence of compatibilizer and Cloisite 30B. Polymer Testing, 2016, 49, 29-37.	2.3	20
88	Influence du taux de porosité sur les propriétés d'un composite non tissé lin/PP. Materiaux Et Techniques, 2016, 104, 405.	0.3	1
89	Études des voies de revalorisation pour des composites non tissés poly-(propylÃ∵ne)/fibre de lin. Revue Des Composites Et Des Materiaux Avances, 2016, 26, 295-311.	0.2	2
90	Editor's Choice – ECAR (Endovasculaire ou Chirurgie dans les Anévrysmes aorto-iliaques Rompus): A French Randomized Controlled Trial of Endovascular Versus Open Surgical Repair of Ruptured Aorto-iliac Aneurysms. European Journal of Vascular and Endovascular Surgery, 2015, 50, 303-310.	0.8	154

#	Article	IF	CITATIONS
91	Analysis of the role of the main constitutive polysaccharides in the flax fibre mechanical behaviour. Industrial Crops and Products, 2015, 76, 1039-1048.	2.5	36
92	Influence of the morphology characters of the stem on the lodging resistance of Marylin flax. Industrial Crops and Products, 2015, 66, 27-37.	2.5	41
93	Reprocessing of wood flour reinforced polypropylene composites: Impact of particle size and coupling agent on composite and particle properties. Polymer Degradation and Stability, 2015, 113, 72-85.	2.7	65
94	Hollow microspheres – poly-(propylene) blends: Relationship between microspheres degradation and composite properties. Polymer Degradation and Stability, 2015, 114, 146-153.	2.7	20
95	Flax/polypropylene composites for lightened structures: Multiscale analysis of process and fibre parameters. Materials and Design, 2015, 87, 331-341.	3.3	47
96	Understanding the lodging stability of green flax stems; The importance of morphology and fibre stiffness. Biosystems Engineering, 2015, 137, 9-21.	1.9	24
97	Optimization of the mechanical performance of UD flax/epoxy composites by selection of fibres along the stem. Composites Part A: Applied Science and Manufacturing, 2015, 77, 204-208.	3.8	38
98	In-situ evaluation of flax fibre degradation during water ageing. Industrial Crops and Products, 2015, 70, 204-210.	2.5	58
99	Fully biodegradable composites: Use of poly-(butylene-succinate) as a matrix and to plasticize I-poly-(lactide)-flax blends. Industrial Crops and Products, 2015, 64, 251-257.	2.5	45
100	Analysis of flax fibres viscoelastic behaviour at micro and nano scales. Composites Part A: Applied Science and Manufacturing, 2015, 68, 219-225.	3.8	39
101	Multi-scale study of the adhesion between flax fibers and biobased thermoset matrices. Materials & Design, 2014, 62, 47-56.	5.1	58
102	Elementary flax fibre tensile properties: Correlation between stress–strain behaviour and fibre composition. Industrial Crops and Products, 2014, 52, 762-769.	2.5	97
103	Average tensile properties of French elementary flax fibers. Materials Letters, 2014, 122, 159-161.	1.3	105
104	Mechanical analysis of elementary flax fibre tensile properties after different thermal cycles. Composites Part A: Applied Science and Manufacturing, 2014, 64, 159-166.	3.8	60
105	Long term immersion in natural seawater of Flax/PLA biocomposite. Ocean Engineering, 2014, 90, 140-148.	1.9	98
106	Multi-scale analysis of the structure and mechanical performance of woody hemp core and the dependence on the sampling location. Industrial Crops and Products, 2014, 60, 193-204.	2.5	46
107	Infrared drying of water based varnish coated on elastomer substrate. International Journal of Thermal Sciences, 2014, 79, 103-110.	2.6	4
108	Tensile properties of elementary fibres of flax and glass: Analysis of reproducibility and scattering. Materials Letters, 2014, 130, 289-291.	1.3	71

#	Article	IF	CITATIONS
109	Analysis of the hemp fiber mechanical properties and their scattering (Fedora 17). Industrial Crops and Products, 2013, 51, 317-327.	2.5	108
110	Effect of flax fibres individualisation on tensile failure of flax/epoxy unidirectional composite. Composites Part A: Applied Science and Manufacturing, 2013, 51, 62-70.	3.8	167
111	A study of the yearly reproducibility of flax fiber tensile properties. Industrial Crops and Products, 2013, 50, 400-407.	2.5	67
112	Observation of the structure of a composite polypropylene/flax and damage mechanisms under stress. Industrial Crops and Products, 2013, 43, 225-236.	2.5	79
113	Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers. Industrial Crops and Products, 2013, 44, 343-351.	2.5	163
114	The effects of gamma irradiation on the morphology and properties of polylactide/Cloisite 30B nanocomposites. Polymer Degradation and Stability, 2013, 98, 348-355.	2.7	43
115	Study of the fibre morphology stability in polypropylene-flax composites. Polymer Degradation and Stability, 2013, 98, 1216-1224.	2.7	58
116	Effet de l'acétylation sur les propriétés mécaniques de composites polypropylène/fibre d'alfa. Annales De Chimie: Science Des Materiaux, 2013, 38, 147-155.	0.2	0
117	Influence of loading rates on morpholgy and mechanical properties of PLA/clay nanocomposites. International Journal of Microstructure and Materials Properties, 2012, 7, 390.	0.1	1
118	Influence of drying on the mechanical behaviour of flax fibres and their unidirectional composites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1226-1233.	3.8	139
119	Nanoindentation contribution to mechanical characterization of vegetal fibers. Composites Part B: Engineering, 2012, 43, 2861-2866.	5.9	31
120	Pectinase treatments on technical fibres of flax: Effects on water sorption and mechanical properties. Carbohydrate Polymers, 2012, 87, 177-185.	5.1	80
121	Improving the interfacial properties between flax fibres and PLLA by a water fibre treatment and drying cycle. Industrial Crops and Products, 2012, 39, 31-39.	2.5	100
122	Morphological and physical evolutions of aramid fibers aged in a moderately alkaline environment. Journal of Applied Polymer Science, 2012, 123, 3098-3105.	1.3	5
123	What is the technical and environmental interest in reusing a recycled polypropylene–hemp fibre composite?. Polymer Degradation and Stability, 2011, 96, 1732-1739.	2.7	57
124	Influence of the sampling area of the stem on the mechanical properties of hemp fibers. Materials Letters, 2011, 65, 797-800.	1.3	125
125	Could oleaginous flax fibers be used as reinforcement for polymers?. Industrial Crops and Products, 2011, 34, 1556-1563.	2.5	70
126	A preliminary evaluation of matricaria maritimum fibres for polymer reinforcement. Industrial Crops and Products, 2011, 34, 1652-1654.	2.5	5

8

#	Article	IF	CITATIONS
127	Relationship between structure and rheological, mechanical and thermal properties of polylactide/Cloisite 30B nanocomposites. Journal of Applied Polymer Science, 2010, 116, 1357-1365.	1.3	18
128	Importance of fiber preparation to optimize the surface and mechanical properties of unitary flax fiber. Industrial Crops and Products, 2010, 32, 662-667.	2.5	89
129	Effect of natural weather on the structure and properties of polylactide/Cloisite 30B nanocomposites. Polymer Degradation and Stability, 2010, 95, 1751-1758.	2.7	127
130	Effects of thermo mechanical processing on the mechanical properties ofÂbiocomposite flax fibers evaluated by nanoindentation. Polymer Degradation and Stability, 2010, 95, 1488-1494.	2.7	47
131	Thermomechanical properties of virgin and recycled polypropylene impact copolymer/CaCO ₃ nanocomposites. Polymer Engineering and Science, 2010, 50, 1904-1913.	1.5	35
132	Morphology, Dynamic Mechanical, Thermal, and Crystallization Behaviors of Poly(trimethylene) Tj ETQq0 0 0 rgBT 3873-3882.	/Overlock 1.8	10 Tf 50 54 28
133	Rigidity analysis of polypropylene/vegetal fibre composites after recycling. Polymer Degradation and Stability, 2009, 94, 297-305.	2.7	145
134	Influence of adhesive bond line thickness on joint strength. International Journal of Adhesion and Adhesives, 2009, 29, 724-736.	1.4	118
135	Investigations of the use of a mussel-inspired compatibilizer to improve the matrix-fiber adhesion of a biocomposite. Polymer Testing, 2009, 28, 668-672.	2.3	67
136	Seawater ageing of low styrene emission resins for marine composites: Mechanical behaviour and nano-indentation studies. Composites Part A: Applied Science and Manufacturing, 2009, 40, 1024-1032.	3.8	34
137	Effect of thermo-mechanical cycles on the physico-chemical properties of poly(lactic acid). Polymer Degradation and Stability, 2008, 93, 321-328.	2.7	201
138	Viscoelasticity properties of biopolymer composite materials determined using finite element calculation and nanoindentation. Computational Materials Science, 2008, 44, 371-377.	1.4	29
139	Effect of recycling on mechanical behaviour of biocompostable flax/poly(l-lactide) composites. Composites Part A: Applied Science and Manufacturing, 2008, 39, 1471-1478.	3.8	177
140	Investigations on mechanical properties of poly(propylene) and poly(lactic acid) reinforced by miscanthus fibers. Composites Part A: Applied Science and Manufacturing, 2008, 39, 1444-1454.	3.8	113
141	Investigation of the polycarbonate/crushed-rubber-particle interphase by nanoindentation. Journal of Applied Polymer Science, 2007, 103, 2687-2694.	1.3	8
142	Investigations on the recycling of hemp and sisal fibre reinforced polypropylene composites. Polymer Degradation and Stability, 2007, 92, 1034-1045.	2.7	198
143	Thermal degradation and (nano)mechanical behavior of layered silicate reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. Polymer Testing, 2007, 26, 652-659.	2.3	87
144	Ecoâ€plastics: Morphological and mechanical properties of recycled poly(carbonate)â€crushed rubber (rPCâ€CR) blends. Polymer Engineering and Science, 2007, 47, 1768-1776.	1.5	11

#	Article	IF	CITATIONS
145	Conductive polymer composites obtained from recycled poly(carbonate) and rubber blends for heating and sensing applications. Polymers for Advanced Technologies, 2006, 17, 727-731.	1.6	45
146	Mechanical Properties of Composites Based on Low Styrene Emission Polyester Resins for Marine Applications. Applied Composite Materials, 2006, 13, 1-22.	1.3	41
147	Conductive polymer composites: Electrical, thermal, and rheological study of injected isotactic poly(propylene)/long stainless-steel fibers for electromagnetic interferences shielding. Journal of Applied Polymer Science, 2006, 100, 3280-3287.	1.3	25
148	Rheological and calorimetric properties of recycled bisphenol A poly(carbonate). Polymer Degradation and Stability, 2003, 82, 99-104.	2.7	29