
Sylwia Talarek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9376024/publications.pdf Version: 2024-02-01

SVINIA TALADER

#	Article	IF	CITATIONS
1	The Mechanisms Involved in Morphine Addiction: An Overview. International Journal of Molecular Sciences, 2019, 20, 4302.	1.8	96
2	<scp>N</scp> europrotective effects of honokiol: from chemistry to medicine. BioFactors, 2017, 43, 760-769.	2.6	57
3	Phosphodiesterase inhibitors say NO to Alzheimer's disease. Food and Chemical Toxicology, 2019, 134, 110822.	1.8	52
4	Influence of a low dose of silver nanoparticles on cerebral myelin and behavior of adult rats. Toxicology, 2016, 363-364, 29-36.	2.0	38
5	ADX-47273, a mGlu5 receptor positive allosteric modulator, attenuates deficits in cognitive flexibility induced by withdrawal from †binge-like' ethanol exposure in rats. Behavioural Brain Research, 2018, 338, 9-16.	1.2	25
6	Non-peptidergic OP4 receptor agonist inhibits morphine antinociception but does not influence morphine dependence. NeuroReport, 2003, 14, 601-604.	0.6	24
7	The effect of perinatal lead exposure on dopamine receptor D2 expression in morphine dependent rats. Toxicology, 2013, 310, 73-83.	2.0	19
8	Effects of Mephedrone and Amphetamine Exposure during Adolescence on Spatial Memory in Adulthood: Behavioral and Neurochemical Analysis. International Journal of Molecular Sciences, 2021, 22, 589.	1.8	19
9	SB-334867 (an Orexin-1 Receptor Antagonist) Effects on Morphine-Induced Sensitization in Mice—a View on Receptor Mechanisms. Molecular Neurobiology, 2018, 55, 8473-8485.	1.9	18
10	Role of nitric oxide in benzodiazepines-induced antinociception in mice. Polish Journal of Pharmacology, 2002, 54, 27-34.	0.3	18
11	Effect of nitric oxide synthase inhibitors on benzodiazepine withdrawal in mice and rats. Pharmacological Reports, 2011, 63, 680-689.	1.5	17
12	Role of nitric oxide in anticonvulsant effects of benzodiazepines in mice. Polish Journal of Pharmacology, 2003, 55, 181-91.	0.3	17
13	Effects of sildenafil treatment on the development of tolerance to diazepam-induced motor impairment and sedation in mice. Pharmacological Reports, 2010, 62, 627-634.	1.5	16
14	Attenuating effect of adenosine receptor agonists on the development of behavioral sensitization induced by sporadic treatment with morphine. Pharmacology Biochemistry and Behavior, 2011, 98, 356-361.	1.3	16
15	Effects of perinatal exposure to lead (Pb) on purine receptor expression in the brain and gliosis in rats tolerant to morphine analgesia. Toxicology, 2016, 339, 19-33.	2.0	16
16	Effects of NOS inhibitors on the benzodiazepines-induced memory impairment of mice in the modified elevated plus-maze task. Behavioural Brain Research, 2013, 244, 100-106.	1.2	15
17	Role of nitric oxide in the development of tolerance to diazepam-induced motor impairment in mice. Pharmacological Reports, 2008, 60, 475-82.	1.5	15
18	The antinociceptive effect of 4-substituted derivatives of 5-(4-chlorophenyl)-2-(morpholin-4-ylmethyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione in mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 2014, 387, 367-375.	1.4	14

Sylwia Talarek

#	Article	IF	CITATIONS
19	The role of linagliptin, a selective dipeptidyl peptidase-4 inhibitor, in the morphine rewarding effects in rats. Neurochemistry International, 2020, 133, 104616.	1.9	14
20	Adenosine receptor agonists attenuate the development of diazepam withdrawal-induced sensitization in mice. European Journal of Pharmacology, 2008, 588, 72-77.	1.7	12
21	Involvement of adenosine receptor agonists on the development of hypersensitivity to acute dose of morphine during morphine withdrawal period. Pharmacological Reports, 2008, 60, 679-85.	1.5	12
22	Effects of the adenosinergic system on the expression and acquisition of sensitization to conditioned place preference in morphine-conditioned rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2016, 389, 233-241.	1.4	11
23	NMDA Receptors and NO:cGMP Signaling Pathway Mediate the Diazepam-Induced Sensitization to Withdrawal Signs in Mice. Neurotoxicity Research, 2018, 33, 422-432.	1.3	11
24	Involvement of nitricoxidergic system in the hypnotic effects of benzodiazepines in mice. Polish Journal of Pharmacology, 2004, 56, 719-26.	0.3	11
25	l-NAME differential effects on diazepam and flunitrazepam responses of rats in the object recognition test. Pharmacological Reports, 2016, 68, 728-732.	1.5	10
26	Influence of nociceptin(1-17) fragments and its tyrosine-substituted derivative on morphine-withdrawal signs in rats. Neuropeptides, 2004, 38, 277-282.	0.9	9
27	Divergent effects of l-arginine-NO pathway modulators on diazepam and flunitrazepam responses in NOR task performance. Behavioural Brain Research, 2015, 284, 179-186.	1.2	9
28	Impact of the metabotropic glutamate receptor7 (mGlu7) allosteric agonist, AMN082, on fear learning and memory and anxiety-like behavior. European Journal of Pharmacology, 2019, 858, 172512.	1.7	9
29	Adenosinergic system is involved in development of diazepam tolerance in mice. Pharmacology Biochemistry and Behavior, 2010, 94, 510-515.	1.3	7
30	The adenosinergic system is involved in sensitization to morphine withdrawal signs in rats—neurochemical and molecular basis in dopaminergic system. Psychopharmacology, 2016, 233, 2383-2397.	1.5	7
31	Effects of chronic flunitrazepam treatment schedule on therapy-induced sedation and motor impairment in mice. Pharmacological Reports, 2013, 65, 50-58.	1.5	6
32	Effects of NMDA antagonists on the development and expression of tolerance to diazepam-induced motor impairment in mice. Pharmacology Biochemistry and Behavior, 2016, 142, 42-47.	1.3	5
33	The Importance of I-Arginine:NO:cGMP Pathway in Tolerance to Flunitrazepam in Mice. Neurotoxicity Research, 2017, 31, 309-316.	1.3	5
34	‬The expression of purinergic P2X4 and P2X7 receptors in selected mesolimbic structures during morphine withdrawal in rats. Brain Research, 2019, 1719, 49-56.	1.1	5
35	Central Effects of the Designer Drug Mephedrone in Mice—Basic Studies. Brain Sciences, 2022, 12, 189.	1.1	5
36	Drugs modulating the L-arginine:NO:cGMP pathway – current use in therapy. Current Issues in Pharmacy and Medical Sciences, 2016, 29, 14-20.	0.1	4

#	Article	IF	CITATIONS
37	Modification of NO-cGMP Pathway Differentially Affects Diazepam- and Flunitrazepam-Induced Spatial and Recognition Memory Impairments in Rodents. Neurotoxicity Research, 2020, 37, 1036-1046.	1.3	4
38	Insight into Glutamatergic Involvement in Rewarding Effects of Mephedrone in Rats: In Vivo and Ex Vivo Study. Molecular Neurobiology, 2021, 58, 4413-4424.	1.9	4
39	New trends in the pharmacological intervention of PPARs in obesity: Role of natural and synthetic compounds Current Medicinal Chemistry, 2020, 28, 4004-4022.	1.2	2