List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9376020/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Handbook of Zeolite Science and Technology. , 0, , .		522
2	Water Oxidation Catalysis using Amorphous Manganese Oxides, Octahedral Molecular Sieves (OMS-2), and Octahedral Layered (OL-1) Manganese Oxide Structures. Journal of Physical Chemistry C, 2012, 116, 6474-6483.	3.1	267
3	Handbook of Layered Materials. , 2004, , .		230
4	Nanoparticle processing: Understanding and controlling aggregation. Advances in Colloid and Interface Science, 2020, 279, 102162.	14.7	212
5	Composite n–p semiconducting titanium oxides as gas sensors. Sensors and Actuators B: Chemical, 2001, 79, 17-27.	7.8	206
6	Hydrothermal Synthesis and Dielectric Properties of Tetragonal BaTiO3. Chemistry of Materials, 1994, 6, 1542-1548.	6.7	197
7	Titanium dioxide based high temperature carbon monoxide selective sensor. Sensors and Actuators B: Chemical, 2001, 72, 239-248.	7.8	194
8	Storage of light energy by photoelectron transfer across a sensitized zeolite–solution interface. Nature, 1993, 362, 43-45.	27.8	190
9	High-Temperature Ceramic Gas Sensors: A Review. International Journal of Applied Ceramic Technology, 2006, 3, 302-311.	2.1	164
10	Raman spectroscopic study of the synthesis of zeolite Y. The Journal of Physical Chemistry, 1987, 91, 2332-2336.	2.9	150
11	Correlation of Raman spectra of zeolites with framework architecture. The Journal of Physical Chemistry, 1991, 95, 6654-6656.	2.9	144
12	Synthesis of Tetragonal BaTiO3by Microwave Heating and Conventional Heating. Chemistry of Materials, 1997, 9, 3023-3031.	6.7	140
13	Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. International Journal of Nanomedicine, 2011, 6, 1833.	6.7	139
14	Interaction of Carbon Monoxide with Anatase Surfaces at High Temperatures:Â Optimization of a Carbon Monoxide Sensor. Journal of Physical Chemistry B, 1999, 103, 4412-4422.	2.6	136
15	Oxidation of Water to Dioxygen by Intrazeolitic Ru(bpy)33+. Journal of the American Chemical Society, 1995, 117, 7687-7695.	13.7	128
16	Synthesis and structure of zeolite ZSM-5: a Raman spectroscopic study. The Journal of Physical Chemistry, 1987, 91, 4329-4333.	2.9	127
17	Room temperature impedance spectroscopy-based sensing of formaldehyde with porous TiO2 under UV illumination. Sensors and Actuators B: Chemical, 2013, 185, 1-9.	7.8	125
18	Synthesis of Ultrathin Zeolite Y Membranes and their Application for Separation of Carbon Dioxide and Nitrogen Gases. Langmuir. 2010. 26. 10287-10293.	3.5	119

#	Article	IF	CITATIONS
19	Photoelectron transfer from tris(2,2'-bipyridine)ruthenium(II) to methylviologen in zeolite cages: a resonance Raman spectroscopic study. The Journal of Physical Chemistry, 1987, 91, 4443-4446.	2.9	110
20	Intrazeolitic photoinduced redox reactions between tris(2,2'-bipyridine)ruthenium(2+) and methylviologen. The Journal of Physical Chemistry, 1992, 96, 9410-9416.	2.9	103
21	Zeta potential measurements of zeolite Y: Application in homogeneous deposition of particle coatings. Microporous and Mesoporous Materials, 2007, 103, 102-107.	4.4	102
22	Spectroscopic studies of the photochromic molecule N-(2-hydroxybenzylidene)aniline and its photoproduct. The Journal of Physical Chemistry, 1990, 94, 4060-4066.	2.9	101
23	New Pebax®/zeolite Y composite membranes for CO2 capture from flue gas. Journal of Membrane Science, 2015, 495, 415-423.	8.2	101
24	Amine-containing polymer/zeolite Y composite membranes for CO2/N2 separation. Journal of Membrane Science, 2016, 497, 21-28.	8.2	101
25	Correlation of sensing behavior of mixed potential sensors with chemical and electrochemical properties of electrodes. Solid State Ionics, 2004, 171, 183-190.	2.7	97
26	Effect of Microwave Frequency on Hydrothermal Synthesis of Nanocrystalline Tetragonal Barium Titanate. Journal of Physical Chemistry C, 2008, 112, 9659-9667.	3.1	97
27	Correlation of framework Raman bands of zeolites with structure. Zeolites, 1988, 8, 306-309.	0.5	96
28	Zeolite host-guest interactions: optical spectroscopic properties of tris(bipyridine)ruthenium(II) in zeolite Y cages. The Journal of Physical Chemistry, 1990, 94, 3075-3081.	2.9	96
29	Crystallization of zeolite A: a spectroscopic study. The Journal of Physical Chemistry, 1986, 90, 2331-2334.	2.9	92
30	Exploitation of Unique Properties of Zeolites in the Development of Gas Sensors. Sensors, 2012, 12, 5170-5194.	3.8	92
31	Minimal Intestinal Epithelial Cell Toxicity in Response to Short- and Long-Term Food-Relevant Inorganic Nanoparticle Exposure. Chemical Research in Toxicology, 2013, 26, 1514-1525.	3.3	88
32	Controlled growth of microporous crystals nucleated in reverse micelles. Nature, 1995, 374, 44-46.	27.8	87
33	Zeolite-supported silver as antimicrobial agents. Coordination Chemistry Reviews, 2019, 383, 1-29.	18.8	85
34	Examination of Au/SnO2 core-shell architecture nanoparticle for low temperature gas sensing applications. Sensors and Actuators B: Chemical, 2011, 157, 444-449.	7.8	84
35	Raman spectroscopy of zeolite A: influence of silicon/aluminum ratio. The Journal of Physical Chemistry, 1988, 92, 354-357.	2.9	81
36	Nanometer-Sized Zeolite X Crystals:  Use as Photochemical Hosts. Journal of Physical Chemistry B, 1998, 102, 1696-1702.	2.6	81

#	Article	IF	CITATIONS
37	Strategies for total NOx measurement with minimal CO interference utilizing a microporous zeolitic catalytic filter. Sensors and Actuators B: Chemical, 2003, 88, 168-177.	7.8	81
38	Microporous zeolite modified yttria stabilized zirconia (YSZ) sensors for nitric oxide (NO) determination in harsh environments. Sensors and Actuators B: Chemical, 2002, 82, 142-149.	7.8	75
39	Controlled release of paraquat from surface-modified zeolite Y. Microporous and Mesoporous Materials, 2006, 88, 312-318.	4.4	65
40	Critical assessment of toxicological effects of ingested nanoparticles. Environmental Science: Nano, 2016, 3, 256-282.	4.3	63
41	Raman spectroscopic studies of the synthesis of faujasitic zeolites: Comparison of two silica sources. Zeolites, 1991, 11, 672-679.	0.5	61
42	Vibrational spectroscopic examination of the formation of mordenite crystals. The Journal of Physical Chemistry, 1991, 95, 5267-5271.	2.9	61
43	Development of high sensitivity potentiometric NOx sensor and its application to breath analysis. Sensors and Actuators B: Chemical, 2011, 158, 292-298.	7.8	61
44	Intrazeolitic Photochemical Charge Separation for Ru(bpy)32+â^'Bipyridinium System:Â Role of the Zeolite Structure. Journal of Physical Chemistry B, 1999, 103, 2408-2416.	2.6	60
45	Oxidation chemistry and electrical activity of Pt on titania: development of a novel zeolite-filter hydrocarbon sensor. Sensors and Actuators B: Chemical, 2004, 102, 132-141.	7.8	59
46	On the Nature and Extent of Intermolecular Interactions between Entrapped Complexes of Ru(bpy)32+in Zeolite Y. Journal of Physical Chemistry B, 1999, 103, 309-320.	2.6	57
47	Nitric oxide sensors using combination of p- and n-type semiconducting oxides and its application for detecting NO in human breath. Sensors and Actuators B: Chemical, 2013, 186, 117-125.	7.8	57
48	Photoelectron Transfer in Zeolite Cages and Its Relevance to Solar Energy Conversion. Journal of Physical Chemistry Letters, 2011, 2, 467-476.	4.6	55
49	Multilayer polymer/zeolite Y composite membrane structure for CO2 capture from flue gas. Journal of Membrane Science, 2016, 498, 1-13.	8.2	55
50	Zeolite Membrane-Based Artificial Photosynthetic Assembly for Long-Lived Charge Separation. Journal of Physical Chemistry B, 2005, 109, 6929-6932.	2.6	54
51	High temperature zirconia oxygen sensor with sealed metal/metal oxide internal reference. Sensors and Actuators B: Chemical, 2007, 124, 192-201.	7.8	53
52	Raman spectroscopic studies of zeolite framework. Hydrated zeolite A and the influence of cations. The Journal of Physical Chemistry, 1985, 89, 1861-1865.	2.9	52
53	Raman spectroscopic studies of the tetramethylammonium ion in zeolite cages. Chemical Physics Letters, 1986, 127, 200-204.	2.6	51
54	Interaction of CO with hydrous ruthenium oxide and development of a chemoresistive ambient CO sensor. Sensors and Actuators B: Chemical, 2011, 152, 307-315.	7.8	51

#	Article	IF	CITATIONS
55	Analysis of the biological and chemical reactivity of zeolite-based aluminosilicate fibers and particulates Environmental Health Perspectives, 2002, 110, 1087-1096.	6.0	50
56	High temperature amperometric total NOx sensors with platinum-loaded zeolite Y electrodes. Sensors and Actuators B: Chemical, 2007, 123, 929-936.	7.8	50
57	Resonance coherent anti-Stokes Raman scattering (CARS) spectra of flavin adenine dinucleotide, riboflavin binding protein and glucose oxidase. Biochemical and Biophysical Research Communications, 1978, 83, 209-216.	2.1	48
58	Mechanism of zeolite formation: Seed-gel interaction. Zeolites, 1994, 14, 250-255.	0.5	48
59	Direct Synthesis of Aqueous CdSe/ZnS-Based Quantum Dots Using Microwave Irradiation. Journal of Physical Chemistry C, 2009, 113, 12132-12139.	3.1	48
60	Analysis of the Photodecomposition Products of Ru(bpy)32+in Various Buffers and upon Zeolite Encapsulation. Analytical Chemistry, 2000, 72, 5219-5224.	6.5	47
61	Development of a dissolved oxygen sensor using tris(bipyridyl) ruthenium (II) complexes entrapped in highly siliceous zeolites. Microporous and Mesoporous Materials, 2003, 64, 109-118.	4.4	45
62	Promoting selectivity and sensitivity for a high temperature YSZ-based electrochemical total NOx sensor by using a Pt-loaded zeolite Y filter. Sensors and Actuators B: Chemical, 2007, 125, 30-39.	7.8	45
63	Examination of Fatty Acid Exchanged Layered Double Hydroxides as Supports for Photochemical Assemblies. Langmuir, 1996, 12, 402-408.	3.5	44
64	Study of the resistance behavior of anatase and rutile thick films towards carbon monoxide and oxygen at high temperatures and possibilities for sensing applications. Sensors and Actuators B: Chemical, 2009, 143, 308-315.	7.8	44
65	Infrared Spectroscopic Study of Reaction of Carbon Dioxide with Aqueous Monoethanolamine Solutions. Industrial & Engineering Chemistry Research, 2016, 55, 6276-6283.	3.7	43
66	Synthesis of silver-zeolite films on micropatterned porous alumina and its application as an antimicrobial substrate. Microporous and Mesoporous Materials, 2010, 135, 131-136.	4.4	41
67	Assembly of Nanoparticles in Zeolite Y for the Photocatalytic Generation of Hydrogen from Water. Journal of Physical Chemistry C, 2011, 115, 2938-2947.	3.1	41
68	Raman Spectral Study of the Composition of Basic Silicate Solutions. Applied Spectroscopy, 1985, 39, 343-346.	2.2	40
69	Examination of the solventlike nature of zeolites based on solvatochromic indicator. The Journal of Physical Chemistry, 1991, 95, 4087-4092.	2.9	39
70	Structure and Vibrational Spectra of Mononitrated Benzo[a]pyrenes. Journal of Physical Chemistry A, 2006, 110, 76-84.	2.5	39
71	Tuning the Activities and Structures of Enzymes Bound to Graphene Oxide with a Protein Glue. Langmuir, 2013, 29, 15643-15654.	3.5	38
72	SO2 interference on separation performance of amine-containing facilitated transport membranes for CO2 capture from flue gas. Journal of Membrane Science, 2017, 534, 33-45.	8.2	38

#	Article	IF	CITATIONS
73	Synthesis and characterization of a ruthenium oxide–zeolite Y catalyst for photochemical oxidation of water to dioxygen. Microporous and Mesoporous Materials, 1998, 22, 475-483.	4.4	37
74	Use of surface-modified zeolite Y for extraction of metal ions from aqueous to organic phase. Microporous and Mesoporous Materials, 1999, 32, 29-35.	4.4	37
75	TiO2-based sensor arrays modeled with nonlinear regression analysis for simultaneously determining CO and O2 concentrations at high temperatures. Sensors and Actuators B: Chemical, 2002, 87, 471-479.	7.8	35
76	High temperature potentiometric NO2 sensor with asymmetric sensing and reference Pt electrodes. Sensors and Actuators B: Chemical, 2010, 143, 459-463.	7.8	35
77	Inflammatory Properties of Iron-Containing Carbon Nanoparticles. Chemical Research in Toxicology, 2007, 20, 1149-1154.	3.3	34
78	Synthesis of Au/SnO2 core–shell structure nanoparticles by a microwave-assisted method and their optical properties. Journal of Solid State Chemistry, 2011, 184, 312-316.	2.9	34
79	Resonance CARS line shapes: Excited state parameters for flavin adenine dinucleotide. Journal of Chemical Physics, 1978, 69, 3119-3123.	3.0	33
80	Resonance CARS (coherent anti‣tokes Raman scattering) line shapes via Frank–Condon scattering: Cytochrome c and βâ€carotene. Journal of Chemical Physics, 1980, 73, 3580-3585.	3.0	33
81	DENSITY FUNCTIONAL THEORETICAL STUDY OF NITRATED POLYCYCLIC AROMATIC HYDROCARBONS. Polycyclic Aromatic Compounds, 2004, 24, 37-64.	2.6	33
82	Interaction of Dimethylmethylphosphonate with Zeolite Y: Impedance-Based Sensor for Detecting Nerve Agent Simulants. Journal of Physical Chemistry C, 2010, 114, 7986-7994.	3.1	33
83	Rapid Crystallization of Faujasitic Zeolites: Mechanism and Application to Zeolite Membrane Growth on Polymer Supports. Langmuir, 2014, 30, 6929-6937.	3.5	33
84	Photochemistry of Azobenzene in Microporous Aluminophosphate AlPO4-5. Journal of Physical Chemistry B, 1998, 102, 8557-8562.	2.6	32
85	Crystal Growth of Faujasitic Microporous Zincophosphate Crystals Using Reverse Micelles as Reactants. Langmuir, 2000, 16, 4148-4153.	3.5	32
86	Temperature-controlled CO, CO2 and NOx sensing in a diesel engine exhaust stream. Sensors and Actuators B: Chemical, 2005, 107, 839-848.	7.8	32
87	Synthesis of zeolite A from reactants enclosed in reverse micelles. Langmuir, 1991, 7, 1048-1050.	3.5	31
88	Novel Surface Structure of Microporous Faujasitic-like Zincophosphate Crystals Grown via Reverse Micelles. Langmuir, 2002, 18, 8193-8197.	3.5	30
89	Interaction of Water with Titania:Â Implications for High-Temperature Gas Sensing. Journal of Physical Chemistry B, 2006, 110, 5647-5654.	2.6	30
90	Dependence of potentiometric oxygen sensing characteristics on the nature of electrodes. Sensors and Actuators B: Chemical, 2006, 113, 162-168.	7.8	30

#	Article	IF	CITATIONS
91	Charge Transport through a Novel Zeolite Y Membrane by a Self-Exchange Process. Journal of Physical Chemistry B, 2002, 106, 11898-11904.	2.6	29
92	Resonance Raman spectroscopic studies of adriamycin and copper(II)-adriamycin and copper(II)-adriamycin-DNA complexes. Biochemistry, 1986, 25, 691-695.	2.5	28
93	Infra-red investigation of sulphonated EPDM polymers. Polymer, 1987, 28, 1467-1471.	3.8	28
94	Fenton Chemistry of FeIII-Exchanged Zeolitic Minerals Treated with Antioxidants. Environmental Science & Technology, 2005, 39, 6147-6152.	10.0	28
95	High temperature potentiometric carbon dioxide sensor with minimal interference to humidity. Sensors and Actuators B: Chemical, 2009, 142, 337-341.	7.8	28
96	Rapid synthesis of faujasite/polyethersulfone composite membrane and application for CO2/N2 separation. Microporous and Mesoporous Materials, 2015, 208, 72-82.	4.4	28
97	Synthesis of Au@SnO2 core–shell nanoparticles with controllable shell thickness and their CO sensing properties. Materials Chemistry and Physics, 2015, 166, 87-94.	4.0	28
98	Charge-Transfer Processes in Zeolites: Toward Better Artificial Photosynthetic Models. Progress in Inorganic Chemistry, 0, , 209-271.	3.0	28
99	Reverse Micelle Based Growth of Zincophosphate Sodalite:Â Examination of Crystal Growth. The Journal of Physical Chemistry, 1996, 100, 9870-9880.	2.9	27
100	Oxidizing Properties of Zeolite-Encapsulated Oxobis(2,2â€~-bipyridine)ruthenium(IV) Complexes Formed by Air Oxidation of Bis(2,2â€~-bipyridine)aquaruthenium(II). Journal of the American Chemical Society, 1997, 119, 4311-4312.	13.7	27
101	Synthesis of Thin, Oriented Zeolite A Membranes on a Macroporous Support. Advanced Functional Materials, 2008, 18, 952-958.	14.9	27
102	Ultrafast Electron Transfer Dynamics in Ruthenium Polypyridyl Complexes with a π-Conjugated Ligand. Journal of Physical Chemistry B, 2010, 114, 14679-14688.	2.6	27
103	Topotactic Transformation of Zeolite Supported Cobalt(II) Hydroxide to Oxide and Comparison of Photocatalytic Oxygen Evolution. ACS Catalysis, 2014, 4, 9-15.	11.2	27
104	Building Selectivity for NO Sensing in a NOx Mixture with Sonochemically Prepared CuO Structures. Chemosensors, 2016, 4, 1.	3.6	27
105	Spectroscopic Studies of Colloidal Solutions of Nanocrystalline Ru(bpy)32+â^'Zeolite Y. Journal of Physical Chemistry B, 2001, 105, 1537-1542.	2.6	26
106	The effect of iron on the biological activities of erionite and mordenite. Environment International, 2003, 29, 451-458.	10.0	26
107	Influence of Solid-State Reactions at the Electrodeâ^'Electrolyte Interface on High-Temperature Potentiometric NOx-Gas Sensors. Journal of Physical Chemistry C, 2007, 111, 8307-8313.	3.1	26
108	Solution-based synthesis of efficient WO3 sensing electrodes for high temperature potentiometric NOx sensors. Sensors and Actuators B: Chemical, 2009, 136, 523-529.	7.8	26

#	Article	IF	CITATIONS
109	Selective detection of part per billion concentrations of ammonia using a p–n semiconducting oxide heterostructure. Sensors and Actuators B: Chemical, 2016, 226, 156-169.	7.8	26
110	Structure-sensitive Raman bands in hydrated zeolite A. Journal of the Chemical Society Chemical Communications, 1985, , 1297.	2.0	24
111	Infrared and resonance Raman spectroscopic studies of 1-hydroxy-9,10-anthraquinone and its metal complexes. Journal of Raman Spectroscopy, 1987, 18, 339-344.	2.5	24
112	Carbon monoxide sensor for PEM fuel cell systems. Sensors and Actuators B: Chemical, 2002, 87, 414-420.	7.8	24
113	Zeolite-supported ruthenium oxide catalysts for photochemical reduction of water to hydrogen. Microporous and Mesoporous Materials, 2003, 62, 107-120.	4.4	24
114	Mixed Ionic and Electronic Conduction in Li[sub 3]PO[sub 4] Electrolyte for a CO[sub 2] Gas Sensor. Journal of the Electrochemical Society, 2006, 153, H4.	2.9	24
115	Raman spectroscopy of metal complexes in zeolite cavities: Cause and removal of interfering photoemission. Zeolites, 1988, 8, 179-182.	O.5	23
116	Macrophage-Mediated Endothelial Inflammatory Responses to Airborne Particulates:Â Impact of Particulate Physicochemical Properties. Chemical Research in Toxicology, 2004, 17, 1303-1312.	3.3	23
117	Influence of Microwave Radiation on the Growth of Gold Nanoparticles and Microporous Zincophosphates in a Reverse Micellar System. Langmuir, 2006, 22, 4825-4831.	3.5	23
118	Physicochemical and Toxicological Properties of Commercial Carbon Blacks Modified by Reaction with Ozone. Environmental Science & amp; Technology, 2011, 45, 10668-10675.	10.0	23
119	Vibrational spectroscopic study of the evolution of the framework of the zeolite ferrierite. Langmuir, 1992, 8, 722-726.	3.5	22
120	Intrazeolitic Photoreactions of Ru(bpy)33+with Methyl Viologen. Langmuir, 1998, 14, 5121-5126.	3.5	22
121	Zeolite-Induced Solvation Effects on Excited-State Properties of Ru(bpy)32+:Â Implications for Intrazeolitic Photochemical Quenching Reactionsâ€. Journal of Physical Chemistry B, 2000, 104, 10783-10788.	2.6	22
122	Oxygen transport in zeolite Y measured by quenching of encapsulated tris(bipyridyl)ruthenium. Microporous and Mesoporous Materials, 2003, 60, 79-90.	4.4	22
123	Comparison of Ultrastructural Cytotoxic Effects of Carbon and Carbon/Iron Particulates on Human Monocyte-Derived Macrophages. Environmental Health Perspectives, 2005, 113, 170-174.	6.0	22
124	Contrast of the Biological Activity of Negatively and Positively Charged Microwave Synthesized CdSe/ZnS Quantum Dots. Chemical Research in Toxicology, 2011, 24, 2176-2188.	3.3	22
125	Evolution of Silver Nanoparticles within an Aqueous Dispersion of Nanosized Zeolite Y: Mechanism and Applications. Journal of Physical Chemistry C, 2014, 118, 28580-28591.	3.1	22
126	Bendable Zeolite Membranes: Synthesis and Improved Gas Separation Performance. Langmuir, 2015, 31, 6894-6901.	3.5	22

#	Article	IF	CITATIONS
127	Silver-coated faujasitic zeolite crystals as surface-enhanced Raman spectroscopic substrates. Langmuir, 1991, 7, 2004-2006.	3.5	21
128	Zeolite-Mediated Photochemical Charge Separation Using a Surface-Entrapped Rutheniumâ^'Polypyridyl Complex. Inorganic Chemistry, 2003, 42, 4215-4222.	4.0	21
129	Oxidative stress-mediated inhibition of intestinal epithelial cell proliferation by silver nanoparticles. Toxicology in Vitro, 2015, 29, 1793-1808.	2.4	21
130	Acidic groups in coal and coal-derived materials. Fuel, 1983, 62, 732-737.	6.4	20
131	Sensing of carbon monoxide gas in reducing environments. Sensors and Actuators B: Chemical, 2002, 84, 189-193.	7.8	20
132	A phosphate-based proton conducting solid electrolyte hydrocarbon gas sensor. Sensors and Actuators B: Chemical, 2002, 87, 480-486.	7.8	20
133	High temperature sensor array for simultaneous determination of O2, CO, and CO2 with kernel ridge regression data analysis. Sensors and Actuators B: Chemical, 2007, 123, 950-963.	7.8	19
134	Optical Spectroscopic Studies of Mononitrated Benzo[<i>a</i>]pyrenes. Journal of Physical Chemistry A, 2009, 113, 12558-12565.	2.5	19
135	Fabrication of zeolite/polymer composite membranes in a roller assembly. Microporous and Mesoporous Materials, 2016, 223, 247-253.	4.4	19
136	Fabrication of high-performance antifogging and antireflective coatings using faujasitic nanozeolites. Microporous and Mesoporous Materials, 2018, 263, 62-70.	4.4	19
137	Synthesis of free-standing chabazite-type films. Microporous and Mesoporous Materials, 2000, 38, 151-159.	4.4	18
138	Interface reaction and its effect on the performance of a CO2 gas sensor based on Li0.35La0.55TiO3 electrolyte and Li2CO3 sensing electrode. Sensors and Actuators B: Chemical, 2013, 182, 95-103.	7.8	18
139	Zeolites. , 2003, , .		17
140	Uptake of bright fluorophore core-silica shell nanoparticles by biological systems. International Journal of Nanomedicine, 2015, 10, 1547.	6.7	17
141	Anchoring of cobalt hydroxide catalysts on nanozeolite crystals for photocatalytic water oxidation. Microporous and Mesoporous Materials, 2015, 217, 125-132.	4.4	17
142	Synthesis of chabazite/polymer composite membrane for CO2/N2 separation. Microporous and Mesoporous Materials, 2016, 230, 208-216.	4.4	17
143	Migration of plasticizer in vinyl resins: An infrared spectroscopic study. Journal of Applied Polymer Science, 1984, 29, 2247-2250.	2.6	16
144	Photochemical processes in zeolites: new developments. Current Opinion in Solid State and Materials Science, 2003, 7, 483-490.	11.5	16

#	Article	IF	CITATIONS
145	Correlation of catalytic activity and sensor response in TiO2 high temperature gas sensors. Sensors and Actuators B: Chemical, 2006, 115, 1-3.	7.8	16
146	Synthesis of zeolite L membranes with sub-micron to micron thicknesses. Microporous and Mesoporous Materials, 2008, 115, 389-398.	4.4	16
147	Entrapment of Ionic Tris(2,2′-Bipyridyl) Ruthenium(II) in Hydrophobic Siliceous Zeolite: O2 Sensing in Biological Environments. Langmuir, 2008, 24, 9140-9147.	3.5	16
148	Tolerance of polymer-zeolite composite membranes to mechanical strain. Journal of Membrane Science, 2016, 518, 192-202.	8.2	16
149	Pentacarbonyl iron(0) in zeolite Y: structure and reactivity. The Journal of Physical Chemistry, 1989, 93, 2596-2603.	2.9	15
150	Separation of photogenerated redox species in zeolites via ion-exchange. Journal of the Chemical Society Chemical Communications, 1993, , 1568.	2.0	15
151	In Vitro Interaction of Zeolite Fibers with Individual Cells (Macrophages NR8383):Â Measurement of Intracellular Oxidative Burst. Analytical Chemistry, 1996, 68, 2309-2312.	6.5	15
152	Detection of CO in a reducing, hydrous environment using CuBr as electrolyte. Sensors and Actuators B: Chemical, 2003, 92, 351-355.	7.8	15
153	Ruthenium Polypyridyl Complexes Containing a Conjugated Ligand LDQ (LDQ =) Tj ETQq1 1 0.784314 rgBT /O Characterization, and Photoinduced Electron Transfer at Solutionâ [°] Zeolite Interfaces. Journal of Physical Chemistry C. 2009. 113. 4623-4633.	verlock 10 3.1	Tf 50 432 Tc 15
154	Interaction of ammonia with intrazeolitic silver ions: Development of an ammonia sensor. Sensors and Actuators B: Chemical, 2014, 193, 542-551.	7.8	15
155	Novel stereospecific syn addition of iodine azide to a strained cyclobutene (tricyclo[4.2.2.02,5]deca-3,7-diene derivative). Tetrahedron Letters, 1975, 16, 445-446.	1.4	14
156	Crystal growth of zincophosphates from conventional media and reverse micelles: mechanistic implications. Microporous and Mesoporous Materials, 1998, 20, 149-159.	4.4	14
157	Identification and Characterization of <i>Bacillus anthracis</i> Spores by Multiparameter Flow Cytometry. Applied and Environmental Microbiology, 2008, 74, 5220-5223.	3.1	14
158	Fabrication of zeolite/polymer multilayer composite membranes for carbon dioxide capture: Deposition of zeolite particles on polymer supports. Journal of Colloid and Interface Science, 2015, 452, 203-214.	9.4	14
159	Synthesis of microporous faujasitic-like zincophosphates from reverse micelles. Microporous and Mesoporous Materials, 2000, 34, 61-65.	4.4	13
160	An Integrated Zeolite Membrane/RuO2Photocatalyst System for Hydrogen Production from Water. Journal of Physical Chemistry C, 2007, 111, 10575-10581.	3.1	13
161	The oxidation of ferrocene to ferricenium ion in zeolite Y: a resonance raman study. Chemical Physics Letters, 1986, 131, 435-437.	2.6	12
162	Existence of Colloidal Primitive Building Units Exhibiting Memory Effects in Zeolite Growth Compositions. Journal of Physical Chemistry B, 2004, 108, 20465-20470.	2.6	12

#	Article	IF	CITATIONS
163	Nitration of Benzo[a]pyrene Adsorbed on Coal Fly Ash Particles by Nitrogen Dioxide: Role of Thermal Activation. Environmental Science & Technology, 2005, 39, 6971-6977.	10.0	12
164	Multi-walled carbon nanotubes as high temperature carbon monoxide sensors. Sensors and Actuators B: Chemical, 2008, 134, 640-646.	7.8	12
165	Visible-Light-Driven Photoreactions of [(bpy) ₂ Ru(II)L]Cl ₂ in Aqueous Solutions (bpy = Bipyridine, L = 1,2-Bis(4-(4â€~-methyl)-2,2â€~-bipyridyl) Ethene). Journal of Physical Chemistry A, 2008, 112, 808-817.	2.5	12
166	Rapid and high yield synthesis method of colloidal nano faujasite. Microporous and Mesoporous Materials, 2016, 230, 89-99.	4.4	12
167	Desorption and fragmentation studies of organic molecules by laser-induced mass spectrometry. Analytica Chimica Acta, 1981, 132, 111-118.	5.4	11
168	Resonance raman spectroscopic studies of cobalticinium ion in zeolite Y: influence of cations and hydration. Zeolites, 1986, 6, 423-426.	0.5	11
169	The AC Electrical Behavior of Hydrothermally Synthesized Barium Titanate Ceramics. Japanese Journal of Applied Physics, 1996, 35, 6145-6152.	1.5	11
170	Raman microprobe studies of dissolution of microporous faujasitic-like zincophosphate crystals. Microporous and Mesoporous Materials, 2001, 42, 235-243.	4.4	11
171	Photochemical studies with a zeolite Y membrane formed via secondary growth. Research on Chemical Intermediates, 2004, 30, 147-161.	2.7	11
172	Compact electrochemical bifunctional NOx/O2 sensor with metal/metal oxide internal reference electrode for high temperature applications. Sensors and Actuators B: Chemical, 2008, 131, 448-454.	7.8	11
173	Spectroscopic Evaluation of the Nucleation and Growth for Microwave-Assisted CdSe/CdS/ZnS Quantum Dot Synthesis. Journal of Physical Chemistry C, 2014, 118, 22258-22267.	3.1	11
174	Modification of a continuous zeolite membrane grown within porous polyethersulfone with Ag(I) cations for enhanced propylene/propane gas separation. Microporous and Mesoporous Materials, 2019, 279, 178-185.	4.4	11
175	Ultraviolet, pulsed laser photolysis of Fe(CO)5 in NaY zeolite. Zeolites, 1992, 12, 142-145.	0.5	10
176	Compositional and structural study of a coal surface using a laser microprobe mass detector. Fuel, 1982, 61, 1241-1244.	6.4	9
177	Towards energy storage. Nature, 1992, 358, 621-621.	27.8	9
178	Rapid Synthesis Method of Faujasitic Zeolite Frameworks Probed with Eu(III) Fluorescence Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 15491-15499.	3.1	9
179	Influence of Cross-Linking, Temperature, and Humidity on CO ₂ /N ₂ Separation Performance of PDMS Coated Zeolite Membranes Grown within a Porous Poly(ether sulfone) Polymer. Industrial & Engineering Chemistry Research, 2017, 56, 6065-6077.	3.7	9
180	Synthesis method for introducing mesoporosity in a faujasitic-like zeolite system from a sodium aluminosilicate gel composition. Microporous and Mesoporous Materials, 2017, 239, 195-208.	4.4	9

#	Article	IF	CITATIONS
181	For1ation of Zeolites: A Molecular Description. Materials Research Society Symposia Proceedings, 1987, 111, 101.	0.1	8
182	Zeolite sensitized photoelectron transfer: Modulation of reduction potentials. Solar Energy Materials and Solar Cells, 1995, 38, 239-248.	6.2	8
183	Aqueous Transformations of Zincophosphate Microporous Materials:  Influence of Framework Topology. Journal of Physical Chemistry B, 2002, 106, 2146-2152.	2.6	8
184	Effect of Rotational Mobility on Photoelectron Transfer:Â Comparison of Two Zeolite Topologies. Journal of Physical Chemistry B, 2003, 107, 11000-11007.	2.6	8
185	Fenton Activity and Cytotoxicity Studies of Iron-Loaded Carbon Particles. Environmental Science & Technology, 2010, 44, 6887-6892.	10.0	8
186	Influence of Crystallite Size on Cation Conductivity in Faujasitic Zeolites. Journal of Physical Chemistry A, 2013, 117, 13704-13711.	2.5	8
187	Development of nanosized lanthanum strontium aluminum manganite as electrodes for potentiometric oxygen sensor. Sensors and Actuators B: Chemical, 2014, 203, 670-676.	7.8	8
188	Vibrational and electronic spectra of 9,10-dihydrobenzo(a)pyren-7(8H)-one and 7,8,9,10-tetrahydrobenzo(a)pyrene: An experimental and computational study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 81, 162-171.	3.9	7
189	Photochemical Water Oxidation by Manganese Oxides Supported on Zeolite Surfaces. ChemistrySelect, 2016, 1, 1431-1440.	1.5	7
190	Optical spectroscopic studies of the polymorphic forms of 1, 4-dihydroxyanthraquinone. Journal of Raman Spectroscopy, 1988, 19, 175-178.	2.5	5
191	Stereoselective modification of circular dichroism spectra of rat lung ?-adrenoceptor protein preparation by enantiomers of epinephrine. , 1996, 8, 463-465.		5
192	Detection of Bacillus anthracis spores: comparison of quantum dot and organic dye labeling agents. Advanced Powder Technology, 2009, 20, 438-446.	4.1	5
193	Smart Sensor Systems for Spacecraft Fire Detection and Air Quality Monitoring. , 2011, , .		5
194	Photochemical Water Oxidation in a Buffered Tris(2,2′-bipyridyl)ruthenium–Persulfate System Using Iron(III)-Modified Potassium Manganese Oxides as Catalysts. ACS Omega, 2018, 3, 11972-11981.	3.5	5
195	Synthesis of zeolites A and X: Influence of cosolvents. Zeolites, 1991, 11, 507-510.	0.5	4
196	Miniaturized Sensor Systems for Early Fire Detection in Spacecraft. , 0, , .		4
197	Smart Chemical Sensor Systems for Fire Detection and Environmental Monitoring in Spacecraft. , 2010, , .		4
198	Effects of Surface and Morphological Properties of Zeolite on Impedance Spectroscopy-Based Sensing Performance. Sensors, 2012, 12, 13284-13294.	3.8	4

#	Article	IF	CITATIONS
199	High-flux, efficient and reusable zeolite/stainless steel meshes for oil/water separation. Microporous and Mesoporous Materials, 2022, 336, 111870.	4.4	4
200	The directing role of 1,4-diazabicyclo[2,2,2]octane (DABCO)-phosphate unit in synthesis of zincophosphate faujasite (ZnPO-X). Microporous and Mesoporous Materials, 2004, 71, 149-155.	4.4	3
201	A SENSOR ARRAY FOR CONTROL OF ENGINE EXHAUST AFTER-TREATMENT SYSTEMS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 236-241.	0.4	1
202	Smart Sensor Systems for Human Health Breath Monitoring Applications. , 2013, , 325-341.		1
203	High-Temperature Ceramic Electrochemical Sensors. , 2014, , 973-981.		1
204	Zeolite Guest-Host Interactions: Implications in Formation, Catalysis, and Photochemistry. Topics in Inclusion Science, 1995, , 215-237.	0.5	1
205	Examination of the growth dynamics of zeolites ZSM-5 and mordenite from inorganic reactant compositions. Microporous Materials, 1994, 3, 17-27.	1.6	0
206	A NOx Sensor for Feedback Control and Emissions Reduction. , 0, , .		0
207	Electronâ€Transfer Processes in Zeolites and Related Microheterogeneous Media ChemInform, 2002, 33, 246-246.	0.0	0
208	Light Activated Processes with Zeolites: Recent Developments. , 2013, , 49-62.		0
209	Novel strategies for development of gas sensors for combustion and medical applications. Proceedings of SPIE, 2014, , .	0.8	0
210	Microfabricated electrochemical sensors for combustion applications. Proceedings of SPIE, 2015, , .	0.8	0
211	Examination of Bacillus anthracis Spores by Multiparameter Flow Cytometry. Methods in Molecular Biology, 2011, 739, 37-48.	0.9	0
212	Biological Activity of Mineral Fibers and Carbon Particulates: Implications for Nanoparticle Toxicity and the Role of Surface Chemistry. , 0, , 287-318.		0