Ricardo A Torres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9375977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrasonic treatment of water contaminated with ibuprofen. Water Research, 2008, 42, 4243-4248.	5.3	253
2	Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: A review. Science of the Total Environment, 2014, 478, 201-225.	3.9	247
3	Ultrasonic cavitation applied to the treatment of bisphenol A. Effect of sonochemical parameters and analysis of BPA by-products. Ultrasonics Sonochemistry, 2008, 15, 605-611.	3.8	238
4	Bisphenol A Mineralization by Integrated Ultrasound-UV-Iron (II) Treatment. Environmental Science & Technology, 2007, 41, 297-302.	4.6	185
5	Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension. Water Research, 2010, 44, 5158-5167.	5.3	174
6	A comparative study of ultrasonic cavitation and Fenton's reagent for bisphenol A degradation in deionised and natural waters. Journal of Hazardous Materials, 2007, 146, 546-551.	6.5	156
7	Electrochemical degradation of p-substituted phenols of industrial interest on Pt electrodes Chemosphere, 2003, 50, 97-104.	4.2	148
8	Influence of TiO2 concentration on the synergistic effect between photocatalysis and high-frequency ultrasound for organic pollutant mineralization in water. Applied Catalysis B: Environmental, 2008, 80, 168-175.	10.8	132
9	Degradation of seventeen contaminants of emerging concern in municipal wastewater effluents by sonochemical advanced oxidation processes. Water Research, 2019, 154, 349-360.	5.3	131
10	Elimination of the antibiotic norfloxacin in municipal wastewater, urine and seawater by electrochemical oxidation on IrO2 anodes. Science of the Total Environment, 2017, 575, 1228-1238.	3.9	127
11	Degradation of highly consumed fluoroquinolones, penicillins and cephalosporins in distilled water and simulated hospital wastewater by UV254 and UV254/persulfate processes. Water Research, 2017, 122, 128-138.	5.3	125
12	Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water. Water Research, 2016, 94, 1-9.	5.3	121
13	Enhanced sonochemical degradation of bisphenol-A by bicarbonate ions. Ultrasonics Sonochemistry, 2010, 17, 111-115.	3.8	117
14	Mineralization enhancement of a recalcitrant pharmaceutical pollutant in water by advanced oxidation hybrid processes. Water Research, 2009, 43, 3984-3991.	5.3	109
15	Ultrasonic degradation of acetaminophen in water: Effect of sonochemical parameters and water matrix. Ultrasonics Sonochemistry, 2014, 21, 1763-1769.	3.8	107
16	High frequency ultrasound as a selective advanced oxidation process to remove penicillinic antibiotics and eliminate its antimicrobial activity from water. Ultrasonics Sonochemistry, 2016, 31, 276-283.	3.8	102
17	Effects of sonochemical parameters and inorganic ions during the sonochemical degradation of crystal violet in water. Ultrasonics Sonochemistry, 2011, 18, 440-446.	3.8	99
18	An innovative ultrasound, Fe2+ and TiO2 photoassisted process for bisphenol a mineralization. Water Research, 2010, 44, 2245-2252.	5.3	98

RICARDO A TORRES

#	Article	IF	CITATIONS
19	Electrochemical degradation of crystal violet with BDD electrodes: Effect of electrochemical parameters and identification of organic by-products. Chemosphere, 2010, 81, 26-32.	4.2	97
20	Comparative degradation of indigo carmine by electrochemical oxidation and advanced oxidation processes. Electrochimica Acta, 2014, 140, 427-433.	2.6	89
21	Effective elimination of fifteen relevant pharmaceuticals in hospital wastewater from Colombia by combination of a biological system with a sonochemical process. Science of the Total Environment, 2019, 670, 623-632.	3.9	88
22	Degradation of the antibiotic oxacillin in water by anodic oxidation with Ti/IrO 2 anodes: Evaluation of degradation routes, organic by-products and effects of water matrix components. Chemical Engineering Journal, 2015, 279, 103-114.	6.6	86
23	Electrochemical treatment of industrial wastewater containing 5-amino-6-methyl-2-benzimidazolone: toward an electrochemical–biological coupling. Water Research, 2003, 37, 3118-3124.	5.3	84
24	Comparison of route, mechanism and extent of treatment for the degradation of a β-lactam antibiotic by TiO 2 photocatalysis, sonochemistry, electrochemistry and the photo-Fenton system. Chemical Engineering Journal, 2016, 284, 953-962.	6.6	81
25	Sonochemical degradation of the pharmaceutical fluoxetine: Effect of parameters, organic and inorganic additives and combination with a biological system. Science of the Total Environment, 2015, 524-525, 354-360.	3.9	80
26	Enhancement and inhibition effects of water matrices during the sonochemical degradation of the antibiotic dicloxacillin. Ultrasonics Sonochemistry, 2015, 22, 211-219.	3.8	77
27	Comparative study of the effect of pharmaceutical additives on the elimination of antibiotic activity during the treatment of oxacillin in water by the photo-Fenton, TiO 2 -photocatalysis and electrochemical processes. Science of the Total Environment, 2016, 541, 1431-1438.	3.9	75
28	Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water. Journal of Hazardous Materials, 2014, 278, 221-226.	6.5	66
29	Sonochemical degradation of antibiotics from representative classes-Considerations on structural effects, initial transformation products, antimicrobial activity and matrix. Ultrasonics Sonochemistry, 2019, 50, 157-165.	3.8	61
30	Solar photocatalitycal treatment of carbofuran at lab and pilot scale: Effect of classical parameters, evaluation of the toxicity and analysis of organic by-products. Journal of Hazardous Materials, 2011, 191, 196-203.	6.5	60
31	Removal of antibiotic cloxacillin by means of electrochemical oxidation, TiO2 photocatalysis, and photo-Fenton processes: analysis of degradation pathways and effect of the water matrix on the elimination of antimicrobial activity. Environmental Science and Pollution Research, 2017, 24, 6339-6352.	2.7	55
32	Experimental design approach to the optimization of ultrasonic degradation of alachlor and enhancement of treated water biodegradability. Ultrasonics Sonochemistry, 2009, 16, 425-430.	3.8	54
33	Microstructural and electrochemical analysis of Sb 2 O 5 doped-Ti/RuO 2 -ZrO 2 to yield active chlorine species for ciprofloxacin degradation. Electrochimica Acta, 2016, 213, 740-751.	2.6	54
34	Structure-reactivity relationship in the degradation of three representative fluoroquinolone antibiotics in water by electrogenerated active chlorine. Chemical Engineering Journal, 2017, 315, 552-561.	6.6	54
35	Remarkable enhancement of bacterial inactivation in wastewater through promotion of solar photo-Fenton at near-neutral pH by natural organic acids. Applied Catalysis B: Environmental, 2017, 205, 219-227.	10.8	54
36	Gliding Arc Discharge (GAD) assisted catalytic degradation of bisphenol A in solution with ferrous ions. Separation and Purification Technology, 2008, 63, 30-37.	3.9	52

#	Article	IF	CITATIONS
37	Sequential helio-photo-Fenton and sonication processes for the treatment of bisphenol A. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 199, 197-203.	2.0	47
38	Efficient cephalexin degradation using active chlorine produced on ruthenium and iridium oxide anodes: Role of bath composition, analysis of degradation pathways and degradation extent. Science of the Total Environment, 2019, 648, 377-387.	3.9	47
39	Inactivation of carbapenem-resistant Klebsiella pneumoniae by photo-Fenton: Residual effect, gene evolution and modifications with citric acid and persulfate. Water Research, 2019, 161, 354-363.	5.3	47
40	Experimental design approach applied to the elimination of crystal violet in water by electrocoagulation with Fe or Al electrodes. Journal of Hazardous Materials, 2010, 179, 120-126.	6.5	46
41	The abatement of indigo carmine using active chlorine electrogenerated on ternary Sb2O5-doped Ti/RuO2-ZrO2 anodes in a filter-press FM01-LC reactor. Electrochimica Acta, 2015, 174, 735-744.	2.6	46
42	Removal of norfloxacin in deionized, municipal water and urine using rice (Oryza sativa) and coffee (Coffea arabica) husk wastes as natural adsorbents. Journal of Environmental Management, 2018, 213, 98-108.	3.8	46
43	Low-frequency ultrasound induces oxygen vacancies formation and visible light absorption in TiO2 P-25 nanoparticles. Ultrasonics Sonochemistry, 2012, 19, 383-386.	3.8	45
44	Effective removal of the antibiotic Nafcillin from water by combining the Photoelectro-Fenton process and Anaerobic Biological Digestion. Science of the Total Environment, 2018, 624, 1095-1105.	3.9	43
45	TiO 2 photocatalysis applied to the degradation and antimicrobial activity removal of oxacillin: Evaluation of matrix components, experimental parameters, degradation pathways and identification of organics by-products. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 311, 95-103.	2.0	41
46	Fe and Cu in humic acid extracts modify bacterial inactivation pathways during solar disinfection and photo-Fenton processes in water. Applied Catalysis B: Environmental, 2018, 235, 75-83.	10.8	41
47	Photo-electro-Fenton process applied to the degradation of valsartan: Effect of parameters, identification of degradation routes and mineralization in combination with a biological system. Journal of Environmental Chemical Engineering, 2018, 6, 7302-7311.	3.3	41
48	Humic Substances Enhance Chlorothalonil Phototransformation via Photoreduction and Energy Transfer. Environmental Science & Technology, 2014, 48, 2218-2225.	4.6	39
49	Electrochemical treatment of penicillin, cephalosporin, and fluoroquinolone antibiotics via active chlorine: evaluation of antimicrobial activity, toxicity, matrix, and their correlation with the degradation pathways. Environmental Science and Pollution Research, 2017, 24, 23771-23782.	2.7	39
50	Selective removal of acetaminophen in urine with activated carbons from rice (Oryza sativa) and coffee (Coffea arabica) husk: Effect of activating agent, activation temperature and analysis of physical-chemical interactions. Journal of Environmental Chemical Engineering, 2019, 7, 103318.	3.3	37
51	Bacterial inactivation and organic oxidation via immobilized photo-Fenton reagent on structured silica surfaces. Applied Catalysis B: Environmental, 2008, 84, 577-583.	10.8	36
52	Selecting the best AOP for isoxazolyl penicillins degradation as a function of water characteristics: Effects of pH, chemical nature of additives and pollutant concentration. Journal of Environmental Management, 2017, 190, 72-79.	3.8	36
53	Electrochemical advanced oxidation processes for Staphylococcus aureus disinfection in municipal WWTP effluents. Journal of Environmental Management, 2017, 198, 256-265.	3.8	35
54	The effect of different operational parameters on the electrooxidation of indigo carmine on Ti/lrO2-SnO2-Sb2O3. Journal of Environmental Chemical Engineering, 2018, 6, 3010-3017.	3.3	35

RICARDO A TORRES

#	Article	IF	CITATIONS
55	Removal of β-lactam antibiotics from pharmaceutical wastewaters using photo-Fenton process at near-neutral pH. Environmental Science and Pollution Research, 2018, 25, 20293-20303.	2.7	33
56	Evaluation of water matrix effects, experimental parameters, and the degradation pathway during the TiO ₂ photocatalytical treatment of the antibiotic dicloxacillin. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2015, 50, 40-48.	0.9	32
57	Role of sulfate, chloride, and nitrate anions on the degradation of fluoroquinolone antibiotics by photoelectro-Fenton. Environmental Science and Pollution Research, 2017, 24, 28175-28189.	2.7	30
58	Elimination of carbapenem resistant Klebsiella pneumoniae in water by UV-C, UV-C/persulfate and UV-C/H2O2. Evaluation of response to antibiotic, residual effect of the processes and removal of resistance gene. Journal of Environmental Chemical Engineering, 2020, 8, 102196.	3.3	30
59	Photoinduced disinfection in sunlit natural waters: Measurement of the second order inactivation rate constants between E.Âcoli and photogenerated transient species. Water Research, 2018, 147, 242-253.	5.3	29
60	Kinetics, Isotherms and Thermodynamic Modeling of Liquid Phase Adsorption of Crystal Violet Dye onto Shrimp-Waste in Its Raw, Pyrolyzed Material and Activated Charcoals. Applied Sciences (Switzerland), 2019, 9, 5337.	1.3	28
61	Elimination of representative fluoroquinolones, penicillins, and cephalosporins by solar photo-Fenton: degradation routes, primary transformations, degradation improvement by citric acid addition, and antimicrobial activity evolution. Environmental Science and Pollution Research, 2020, 27, 41381-41393.	2.7	27
62	Bench-scale reactor for Cefadroxil oxidation and elimination of its antibiotic activity using electro-generated active chlorine. Journal of Environmental Chemical Engineering, 2019, 7, 103173.	3.3	24
63	Comparative Evaluation of Photo-Chemical AOPs for Ciprofoxacin Degradation: Elimination in Natural Waters and Analysis of pH Effect, Primary Degradation By-Products, and the Relationship with the Antibiotic Activity. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	23
64	Evaluating the Removal of the Antibiotic Cephalexin from Aqueous Solutions Using an Adsorbent Obtained from Palm Oil Fiber. Molecules, 2021, 26, 3340.	1.7	23
65	The Effects of ZrO2on the Electrocatalysis to Yield Active Chlorine Species on Sb2O5-Doped Ti/RuO2Anodes. Journal of the Electrochemical Society, 2016, 163, H818-H825.	1.3	22
66	Evaluation of process influencing factors, degradation products, toxicity evolution and matrix-related effects during electro-Fenton removal of piroxicam from waters. Journal of Environmental Chemical Engineering, 2019, 7, 103400.	3.3	21
67	Degradation of Losartan in Fresh Urine by Sonochemical and Photochemical Advanced Oxidation Processes. Water (Switzerland), 2020, 12, 3398.	1.2	19
68	Degradation of a Toxic Mixture of the Pesticides Carbofuran and Iprodione by UV/H2O2: Evaluation of Parameters and Implications of the Degradation Pathways on the Synergistic Effects. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	18
69	Solar photo-Fenton treatment of carbofuran: Analysis of mineralization, toxicity, and organic by-products. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 2141-2150.	0.9	17
70	An Initial Approach to the Presence of Pharmaceuticals in Wastewater from Hospitals in Colombia and Their Environmental Risk. Water (Switzerland), 2022, 14, 950.	1.2	12
71	Data on treatment of nafcillin and ampicillin antibiotics in water by sonochemistry. Data in Brief, 2020, 29, 105361.	0.5	10
72	Dataset on the degradation of losartan by TiO2-photocatalysis and UVC/persulfate processes. Data in Brief, 2020, 31, 105692.	0.5	8

RICARDO A TORRES

#	Article	IF	CITATIONS
73	Degradation of Recalcitrant Safranin T Through an Electrochemical Process and Three Photochemical Advanced Oxidation Technologies. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	7
74	Improvement of solar photo-Fenton by extracts of amazonian fruits for the degradation of pharmaceuticals in municipal wastewater. Environmental Science and Pollution Research, 2022, 29, 42146-42156.	2.7	7
75	Synergistic Coupling Between Electrochemical and Ultrasound Treatments for Organic Pollutant Degradation as a Function of the Electrode Material (IrO2 and BDD) and the Ultrasonic frequency (20) Tj ETQq1 1	መ <i>ፑ</i> 84314	∙ gBT /Ονε
76	Dataset on application of electrochemical and photochemical processes for sulfacetamide antibiotic elimination in water. Data in Brief, 2020, 29, 105158.	0.5	6
77	Understanding the Role of Complexation of Fluoroquinolone and β-Lactam Antibiotics with Iron (III) on the Photodegradation under Solar Light and UVC Light. Water (Switzerland), 2021, 13, 2603.	1.2	5
78	Tratamiento de aguas contaminadas con colorantes mediante fotocatálisis con TiO2 usando luz artificial y solar. Produccion Y Limpia, 2017, 12, 50-60.	0.2	4
79	Distribution of Nitrogen Ions Generated in the Electrochemical Oxidation of Nitrogen Containing Organic Compounds. Portugaliae Electrochimica Acta, 2009, 27, 203-213.	0.4	4
80	Advanced oxidation technologies: state-of-the-art in Ibero-American countries. Environmental Science and Pollution Research, 2019, 26, 4153-4154.	2.7	2
81	Use of CdS from Teaching-Laboratory Wastes as a Photocatalyst for the Degradation of Fluoroquinolone Antibiotics in Water. Water (Switzerland), 2021, 13, 2154.	1.2	0
82	Arcillas activadas para el blanqueamiento del aceite de palma y remoción del colorante azul Ãndigo carmÃn del agua. Produccion Y Limpia, 2020, 14, 21-29.	0.2	0