Helle SÃ, nderby Waagepetersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9375905/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rates of pyruvate carboxylase, glutamate and GABA neurotransmitter cycling, and glucose oxidation in multiple brain regions of the awake rat using a combination of [2- ¹³ C]/[1- ¹³ C]glucose infusion and ¹ H-[¹³ C]NMR <i>ex vivo</i>). Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1507-1523.	2.4	11
2	Progressive Mitochondrial Dysfunction of Striatal Synapses in R6/2 Mouse Model of Huntington's Disease. Journal of Huntington's Disease, 2022, 11, 121-140.	0.9	5
3	Proteomic phenotype of cerebral organoids derived from autism spectrum disorder patients reveal disrupted energy metabolism, cellular components, and biological processes. Molecular Psychiatry, 2022, 27, 3749-3759.	4.1	11
4	Clearance of activityâ€evoked K ⁺ transients and associated glia cell swelling occur independently of <scp>AQP4</scp> : A study with an isoformâ€selective <scp>AQP4</scp> inhibitor. Glia, 2021, 69, 28-41.	2.5	27
5	Deficient astrocyte metabolism impairs glutamine synthesis and neurotransmitter homeostasis in a mouse model of Alzheimer's disease. Neurobiology of Disease, 2021, 148, 105198.	2.1	52
6	Downregulation of GABA Transporter 3 (GAT3) is Associated with Deficient Oxidative GABA Metabolism in Human Induced Pluripotent Stem Cell-Derived Astrocytes in Alzheimer's Disease. Neurochemical Research, 2021, 46, 2676-2686.	1.6	13
7	Two Metabolic Fuels, Glucose and Lactate, Differentially Modulate Exocytotic Glutamate Release from Cultured Astrocytes. Neurochemical Research, 2021, 46, 2551-2579.	1.6	3
8	Glutamate Dehydrogenase Is Important for Ammonia Fixation and Amino Acid Homeostasis in Brain During Hyperammonemia. Frontiers in Neuroscience, 2021, 15, 646291.	1.4	13
9	Pharmacological inhibition of mitochondrial soluble adenylyl cyclase in astrocytes causes activation of <scp>AMP</scp> â€activated protein kinase and induces breakdown of glycogen. Glia, 2021, 69, 2828-2844.	2.5	11
10	Functional Metabolic Mapping Reveals Highly Active Branched-Chain Amino Acid Metabolism in Human Astrocytes, Which Is Impaired in iPSC-Derived Astrocytes in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2021, 13, 736580.	1.7	35
11	Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology, 2021, 196, 108719.	2.0	145
12	Astrocyte metabolism of the medium-chain fatty acids octanoic acid and decanoic acid promotes GABA synthesis in neurons via elevated glutamine supply. Molecular Brain, 2021, 14, 132.	1.3	39
13	Cellular bioenergetics in human iPSC–derived glutamatergic neurons in health and disease. , 2021, , 205-221.		0
14	Hippocampal disruptions of synaptic and astrocyte metabolism are primary events of early amyloid pathology in the 5xFAD mouse model of Alzheimer's disease. Cell Death and Disease, 2021, 12, 954.	2.7	41
15	Diphenylalanine Peptide Nanowires as a Substrate for Neural Cultures. BioNanoScience, 2020, 10, 224-234.	1.5	3
16	Glutamate-glutamine homeostasis is perturbed in neurons and astrocytes derived from patient iPSC models of frontotemporal dementia. Molecular Brain, 2020, 13, 125.	1.3	36
17	Conditional Knockout of GLT-1 in Neurons Leads to Alterations in Aspartate Homeostasis and Synaptic Mitochondrial Metabolism in Striatum and Hippocampus. Neurochemical Research, 2020, 45, 1420-1437.	1.6	17
18	Extensive astrocyte metabolism of γâ€aminobutyric acid (<scp>GABA</scp>) sustains glutamine synthesis in the mammalian cerebral cortex. Glia, 2020, 68, 2601-2612.	2.5	28

#	Article	IF	CITATIONS
19	Staphylococcus aureus induces cell-surface expression of immune stimulatory NKG2D ligands on human monocytes. Journal of Biological Chemistry, 2020, 295, 11803-11821.	1.6	10
20	AMPâ€ectivated protein kinase (AMPK) regulates astrocyte oxidative metabolism by balancing TCA cycle dynamics. Glia, 2020, 68, 1824-1839.	2.5	31
21	PARK2 Mutation Causes Metabolic Disturbances and Impaired Survival of Human iPSC-Derived Neurons. Frontiers in Cellular Neuroscience, 2019, 13, 297.	1.8	47
22	Distinct differences in rates of oxygen consumption and ATP synthesis of regionally isolated nonâ€synaptic mouse brain mitochondria. Journal of Neuroscience Research, 2019, 97, 961-974.	1.3	22
23	The role of astrocytes in seizure generation: insights from a novel in vitro seizure model based on mitochondrial dysfunction. Brain, 2019, 142, 391-411.	3.7	44
24	Phosphorylation of Glutamine Synthetase on Threonine 301 Contributes to Its Inactivation During Epilepsy. Frontiers in Molecular Neuroscience, 2019, 12, 120.	1.4	9
25	Glycogen metabolism is impaired in the brain of male type 2 diabetic Gotoâ€Kakizaki rats. Journal of Neuroscience Research, 2019, 97, 1004-1017.	1.3	16
26	Functional Differences between Synaptic Mitochondria from the Striatum and the Cerebral Cortex. Neuroscience, 2019, 406, 432-443.	1.1	5
27	Dual Properties of Lactate in MÃ1/4ller Cells: The Effect of GPR81 Activation. , 2019, 60, 999.		19
28	Enhanced cerebral branched-chain amino acid metabolism in R6/2 mouse model of Huntington's disease. Cellular and Molecular Life Sciences, 2019, 76, 2449-2461.	2.4	12
29	Lactate-Mediated Protection of Retinal Ganglion Cells. Journal of Molecular Biology, 2019, 431, 1878-1888.	2.0	25
30	Deletion of Neuronal GLT-1 in Mice Reveals Its Role in Synaptic Glutamate Homeostasis and Mitochondrial Function. Journal of Neuroscience, 2019, 39, 4847-4863.	1.7	42
31	Astrocytic pyruvate carboxylation: Status after 35 years. Journal of Neuroscience Research, 2019, 97, 890-896.	1.3	37
32	State-Dependent Changes in Brain Glycogen Metabolism. Advances in Neurobiology, 2019, 23, 269-309.	1.3	6
33	Essential Roles of Lactate in Müller Cell Survival and Function. Molecular Neurobiology, 2018, 55, 9108-9121.	1.9	22
34	Astrocytic glycogen metabolism in the healthy and diseased brain. Journal of Biological Chemistry, 2018, 293, 7108-7116.	1.6	106
35	Glutamate dehydrogenase is essential to sustain neuronal oxidative energy metabolism during stimulation. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1754-1768.	2.4	36
36	Integrative Characterization of the R6/2 Mouse Model of Huntington's Disease Reveals Dysfunctional Astrocyte Metabolism. Cell Reports, 2018, 23, 2211-2224.	2.9	79

#	Article	IF	CITATIONS
37	The inhibitors of soluble adenylate cyclase 2-OHE, KH7, and bithionol compromise mitochondrial ATP production by distinct mechanisms. Biochemical Pharmacology, 2018, 155, 92-101.	2.0	17
38	Glutamate and ATP at the Interface Between Signaling and Metabolism in Astroglia: Examples from Pathology. Neurochemical Research, 2017, 42, 19-34.	1.6	33
39	Citrate, a Ubiquitous Key Metabolite with Regulatory Function in the CNS. Neurochemical Research, 2017, 42, 1583-1588.	1.6	55
40	Epigallocatechin-3-gallate (EGCG) activates AMPK through the inhibition of glutamate dehydrogenase in muscle and pancreatic ß-cells: A potential beneficial effect in the pre-diabetic state?. International Journal of Biochemistry and Cell Biology, 2017, 88, 220-225.	1.2	48
41	Improved cerebral energetics and ketone body metabolism in db/db mice. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1137-1147.	2.4	34
42	Patient iPSC-Derived Neurons for Disease Modeling of Frontotemporal Dementia with Mutation in CHMP2B. Stem Cell Reports, 2017, 8, 648-658.	2.3	65
43	Characterization of the L-glutamate clearance pathways across the blood–brain barrier and the effect of astrocytes in an inÂvitro blood–brain barrier model. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3744-3758.	2.4	9
44	Characterization of energy and neurotransmitter metabolism in cortical glutamatergic neurons derived from human induced pluripotent stem cells: A novel approach to study metabolism in human neurons. Neurochemistry International, 2017, 106, 48-61.	1.9	14
45	Mitochondrial function in Müller cells - Does it matter?. Mitochondrion, 2017, 36, 43-51.	1.6	49
46	The novel anticonvulsant neuropeptide and galanin analogue, NAXâ€5055, does not alter energy and amino acid metabolism in cultured brain cells. Journal of Neuroscience Research, 2017, 95, 2286-2296.	1.3	0
47	Specificity of exogenous acetate and glutamate as astrocyte substrates examined in acute brain slices from female mice using methionine sulfoximine (MSO) to inhibit glutamine synthesis. Journal of Neuroscience Research, 2017, 95, 2207-2216.	1.3	24
48	The tricarboxylic acid cycle activity in cultured primary astrocytes is strongly accelerated by the protein tyrosine kinase inhibitor tyrphostin 23. Neurochemistry International, 2017, 102, 13-21.	1.9	5
49	Glycogen Shunt Activity and Glycolytic Supercompensation in Astrocytes May Be Distinctly Mediated via the Muscle Form of Glycogen Phosphorylase. Neurochemical Research, 2017, 42, 2490-2494.	1.6	9
50	The antidiabetic drug metformin decreases mitochondrial respiration and tricarboxylic acid cycle activity in cultured primary rat astrocytes. Journal of Neuroscience Research, 2017, 95, 2307-2320.	1.3	22
51	Expression of the human isoform of glutamate dehydrogenase, hGDH2, augments TCA cycle capacity and oxidative metabolism of glutamate during glucose deprivation in astrocytes. Glia, 2017, 65, 474-488.	2.5	30
52	Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-13C]Glucose and [1,2-13C]Acetate as Substrates. Neurochemical Research, 2017, 42, 810-826.	1.6	30
53	Glutamate Transporters in the Blood-Brain Barrier. Advances in Neurobiology, 2017, 16, 297-314.	1.3	15
54	Glucose, Lactate and Glutamine but not Glutamate Support Depolarization-Induced Increased Respiration in Isolated Nerve Terminals, Neurochemical Research, 2017, 42, 191-201	1.6	14

#	Article	IF	CITATIONS
55	Alterations in Cerebral Cortical Glucose and Glutamine Metabolism Precedes Amyloid Plaques in the APPswe/PSEN1dE9 Mouse Model of Alzheimer's Disease. Neurochemical Research, 2017, 42, 1589-1598.	1.6	58
56	Impaired Hippocampal Glutamate and Glutamine Metabolism in the db/db Mouse Model of Type 2 Diabetes Mellitus. Neural Plasticity, 2017, 2017, 1-9.	1.0	26
57	Gamma-Aminobutyric Acid (GABA) â~†. , 2017, , .		2
58	Chronic Pyruvate Supplementation Increases Exploratory Activity and Brain Energy Reserves in Young and Middle-Aged Mice. Frontiers in Aging Neuroscience, 2016, 8, 41.	1.7	29
59	Anaplerosis for Glutamate Synthesis in the Neonate and in Adulthood. Advances in Neurobiology, 2016, 13, 43-58.	1.3	12
60	Glutamate oxidation in astrocytes: Roles of glutamate dehydrogenase and aminotransferases. Journal of Neuroscience Research, 2016, 94, 1561-1571.	1.3	80
61	The 11th International Conference on Brain Energy Metabolism "how energy metabolism shapes brain functionâ€: Journal of Neuroscience Research, 2015, 93, 985-986.	1.3	Ο
62	Effects of ketone bodies in Alzheimer's disease in relation to neural hypometabolism, βâ€∎myloid toxicity, and astrocyte function. Journal of Neurochemistry, 2015, 134, 7-20.	2.1	85
63	Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes. Glia, 2015, 63, 2313-2326.	2.5	60
64	Glucose replaces glutamate as energy substrate to fuel glutamate uptake in glutamate dehydrogenaseâ€deficient astrocytes. Journal of Neuroscience Research, 2015, 93, 1093-1100.	1.3	16
65	Glutamate neurotransmission is affected in prenatally stressed offspring. Neurochemistry International, 2015, 88, 73-87.	1.9	32
66	Dynamic Changes in Cytosolic ATP Levels in Cultured Glutamatergic Neurons During NMDA-Induced Synaptic Activity Supported by Glucose or Lactate. Neurochemical Research, 2015, 40, 2517-2526.	1.6	19
67	AMPK Activation Affects Glutamate Metabolism in Astrocytes. Neurochemical Research, 2015, 40, 2431-2442.	1.6	20
68	Astroglia and Brain Metabolism: Focus on Energy and Neurotransmitter Amino Acid Homeostasis. Colloquium Series on Neuroglia in Biology and Medicine From Physiology To Disease, 2015, 2, 1-64.	0.5	1
69	Fluidic system for long-term in vitro culturing and monitoring of organotypic brain slices. Biomedical Microdevices, 2015, 17, 71.	1.4	10
70	GDH-Dependent Glutamate Oxidation in the Brain Dictates Peripheral Energy Substrate Distribution. Cell Reports, 2015, 13, 365-375.	2.9	49
71	Isoform-selective regulation of glycogen phosphorylase by energy deprivation and phosphorylation in astrocytes. Glia, 2015, 63, 154-162.	2.5	47
72	The Glutamine–Glutamate/GABA Cycle: Function, Regional Differences in Glutamate and GABA Production and Effects of Interference with GABA Metabolism. Neurochemical Research, 2015, 40, 402-409.	1.6	177

#	Article	IF	CITATIONS
73	Effects of diabetes on brain metabolism – is brain glycogen a significant player?. Metabolic Brain Disease, 2015, 30, 335-343.	1.4	28
74	Oxidative metabolism of astrocytes is not reduced in hepatic encephalopathy: a PET study with [11C]acetate in humans. Frontiers in Neuroscience, 2014, 8, 353.	1.4	16
75	A Subconvulsive Dose of Kainate Selectively Compromises Astrocytic Metabolism in the Mouse Brain <i>In Vivo</i> . Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1340-1346.	2.4	15
76	Glutamate Metabolism in the Brain Focusing on Astrocytes. Advances in Neurobiology, 2014, 11, 13-30.	1.3	274
77	Glutamate Dehydrogenase Isoforms with N-Terminal (His)6- or FLAG-Tag Retain Their Kinetic Properties and Cellular Localization. Neurochemical Research, 2014, 39, 487-499.	1.6	7
78	Effects of hyperammonemia on brain energy metabolism: controversial findings in vivo and in vitro. Metabolic Brain Disease, 2014, 29, 913-917.	1.4	19
79	Effect of Glutamine Synthetase Inhibition on Brain and Interorgan Ammonia Metabolism in Bile Duct Ligated Rats. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 460-466.	2.4	16
80	Limited Energy Supply in Müller Cells Alters Glutamate Uptake. Neurochemical Research, 2014, 39, 941-949.	1.6	24
81	Astrocyte glycogenolysis is triggered by storeâ€operated calcium entry and provides metabolic energy for cellular calcium homeostasis. Clia, 2014, 62, 526-534.	2.5	62
82	Metabolic Mapping of Astrocytes and Neurons in Culture Using Stable Isotopes and Gas Chromatography-Mass Spectrometry (GC-MS). Neuromethods, 2014, , 73-105.	0.2	31
83	Complex Actions of Ionomycin in Cultured Cerebellar Astrocytes Affecting Both Calcium-Induced Calcium Release and Store-Operated Calcium Entry. Neurochemical Research, 2013, 38, 1260-1265.	1.6	19
84	The effect of pH and ADP on ammonia affinity for human glutamate dehydrogenases. Metabolic Brain Disease, 2013, 28, 127-131.	1.4	17
85	Hepatic encephalopathy is associated with decreased cerebral oxygen metabolism and blood flow, not increased ammonia uptake. Hepatology, 2013, 57, 258-265.	3.6	63
86	Brain Alanine Formation as an Ammonia-Scavenging Pathway during Hyperammonemia: Effects of Glutamine Synthetase Inhibition in Rats and Astrocyte—Neuron Co-Cultures. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1235-1241.	2.4	36
87	Role of branched chain amino acids in cerebral ammonia homeostasis related to hepatic encephalopathy. Metabolic Brain Disease, 2013, 28, 209-215.	1.4	20
88	Interorgan metabolism of ornithine phenylacetate (OP)—A novel strategy for treatment of hyperammonemia. Biochemical Pharmacology, 2013, 85, 115-123.	2.0	15
89	Astrocytic Control of Biosynthesis and Turnover of the Neurotransmitters Glutamate and GABA. Frontiers in Endocrinology, 2013, 4, 102.	1.5	228
90	Reply. Hepatology, 2013, 58, 833-834.	3.6	1

#	Article	IF	CITATIONS
91	Energy Metabolism of the Brain. , 2012, , 200-231.		79
92	Delineation of glutamate pathways and secretory responses in pancreatic islets with β-cell–specific abrogation of the glutamate dehydrogenase. Molecular Biology of the Cell, 2012, 23, 3851-3862.	0.9	39
93	Quantitative Importance of the Pentose Phosphate Pathway Determined by Incorporation of ¹³ C from [2- ¹³ C]- and [3- ¹³ C]Glucose into TCA Cycle Intermediates and Neurotransmitter Amino Acids in Functionally Intact Neurons. Journal of Cerebral Blood Flow and Metabolism 2012, 32, 1788-1799	2.4	54
94	Novel Model of Neuronal Bioenergetics: Postsynaptic Utilization of Glucose but not Lactate Correlates Positively with Ca ²⁺ Signalling in Cultured Mouse Glutamatergic Neurons. ASN Neuro, 2012, 4, AN20120004.	1.5	39
95	Aspects of Astrocyte Energy Metabolism, Amino Acid Neurotransmitter Homoeostasis and Metabolic Compartmentation. ASN Neuro, 2012, 4, AN20120007.	1.5	70
96	Brain glycogen—new perspectives on its metabolic function and regulation at the subcellular level. Frontiers in Neuroenergetics, 2012, 4, 3.	5.3	171
97	Brain glycogen and its role in supporting glutamate and GABA homeostasis in a type 2 diabetes rat model. Neurochemistry International, 2012, 60, 267-275.	1.9	55
98	siRNA knock down of glutamate dehydrogenase in astrocytes affects glutamate metabolism leading to extensive accumulation of the neuroactive amino acids glutamate and aspartate. Neurochemistry International, 2012, 61, 490-497.	1.9	40
99	Deletion of glutamate dehydrogenase 1 (<i><scp>G</scp>lud1</i>) in the central nervous system affects glutamate handling without altering synaptic transmission. Journal of Neurochemistry, 2012, 123, 342-348.	2.1	52
100	Primary Cultures of Astrocytes: Their Value in Understanding Astrocytes in Health and Disease. Neurochemical Research, 2012, 37, 2569-2588.	1.6	136
101	Valine but not leucine or isoleucine supports neurotransmitter glutamate synthesis during synaptic activity in cultured cerebellar neurons. Journal of Neuroscience Research, 2012, 90, 1768-1775.	1.3	16
102	<i>In vitro</i> evidence for the brain glutamate efflux hypothesis: Brain endothelial cells cocultured with astrocytes display a polarized brainâ€toâ€blood transport of glutamate. Glia, 2012, 60, 882-893.	2.5	69
103	Direct measurement of backflux between oxaloacetate and fumarate following pyruvate carboxylation. Glia, 2012, 60, 147-158.	2.5	20
104	Effects of Adrenergic Agents on Intracellular Ca2+ Homeostasis and Metabolism of Glucose in Astrocytes with an Emphasis on Pyruvate Carboxylation, Oxidative Decarboxylation and Recycling: Implications for Glutamate Neurotransmission and Excitotoxicity. Neurotoxicity Research, 2012, 21, 405-417	1.3	22
105	Impairment of the Organization of Locomotor and Exploratory Behaviors in Bile Duct-Ligated Rats. PLoS ONE, 2012, 7, e36322.	1.1	31
106	Inhibition of glutamine synthesis induces glutamate dehydrogenase-dependent ammonia fixation into alanine in co-cultures of astrocytes and neurons. Neurochemistry International, 2011, 59, 482-488.	1.9	36
107	Synthesis of neurotransmitter GABA via the neuronal tricarboxylic acid cycle is elevated in rats with liver cirrhosis consistent with a high GABAergic tone in chronic hepatic encephalopathy. Journal of Neurochemistry, 2011, 117, 824-832.	2.1	37
108	Knockout of GAD65 has Major Impact on Synaptic GABA Synthesized from Astrocyte-Derived Glutamine. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 494-503.	2.4	70

#	Article	IF	CITATIONS
109	Detoxification of Ammonia in Mouse Cortical GABAergic Cell Cultures Increases Neuronal Oxidative Metabolism and Reveals an Emerging Role for Release of Glucose-Derived Alanine. Neurotoxicity Research, 2011, 19, 496-510.	1.3	43
110	Neuron–glia interactions in glutamatergic neurotransmission: Roles of oxidative and glycolytic adenosine triphosphate as energy source. Journal of Neuroscience Research, 2011, 89, 1926-1934.	1.3	50
111	Branched-chain amino acids increase arterial blood ammonia in spite of enhanced intrinsic muscle ammonia metabolism in patients with cirrhosis and healthy subjects. American Journal of Physiology - Renal Physiology, 2011, 301, G269-G277.	1.6	49
112	13C NMR Spectroscopy and Mass Spectrometry Analysis of Intermediary Metabolism in Cultured Neural Cells. Neuromethods, 2011, , 403-415.	0.2	2
113	Glutamate and Glutamine in Brain Disorders. Advances in Neurobiology, 2011, , 195-212.	1.3	1
114	Paracellular Tightness and Claudin-5 Expression is Increased in the BCEC/Astrocyte Blood–Brain Barrier Model by Increasing Media Buffer Capacity During Growth. AAPS Journal, 2010, 12, 759-770.	2.2	55
115	Functional Importance of the Astrocytic Glycogen-Shunt and Glycolysis for Maintenance of an Intact Intra/Extracellular Glutamate Gradient. Neurotoxicity Research, 2010, 18, 94-99.	1.3	45
116	Characterization of Primary and Secondary Cultures of Astrocytes Prepared from Mouse Cerebral Cortex. Neurochemical Research, 2010, 35, 2043-2052.	1.6	21
117	GAD65 is essential for synthesis of GABA destined for tonic inhibition regulating epileptiform activity. Journal of Neurochemistry, 2010, 115, 1398-1408.	2.1	54
118	Obesity and Type 2 Diabetes in Rats are Associated with Altered Brain Glycogen and Amino-Acid Homeostasis. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1527-1537.	2.4	77
119	Metabolic fate of isoleucine in a rat model of hepatic encephalopathy and in cultured neural cells exposed to ammonia. Metabolic Brain Disease, 2009, 24, 135-145.	1.4	28
120	Functional significance of brain glycogen in sustaining glutamatergic neurotransmission. Journal of Neurochemistry, 2009, 109, 80-86.	2.1	109
121	Neuronal glucose but not lactate utilization is positively correlated with NMDAâ€induced neurotransmission and fluctuations in cytosolic Ca ²⁺ levels. Journal of Neurochemistry, 2009, 109, 87-93.	2.1	97
122	Availability of neurotransmitter glutamate is diminished when βâ€hydroxybutyrate replaces glucose in cultured neurons. Journal of Neurochemistry, 2009, 110, 80-91.	2.1	51
123	Energy and Amino Acid Neurotransmitter Metabolism in Astrocytes. , 2009, , 177-200.		13
124	Robust glycogen shunt activity in astrocytes: Effects of glutamatergic and adrenergic agents. Neuroscience, 2009, 158, 284-292.	1.1	139
125	Low Cerebral Oxygen Consumption and Blood Flow in Patients With Cirrhosis and an Acute Episode of Hepatic Encephalopathy. Gastroenterology, 2009, 136, 863-871.	0.6	102
126	Metabolism of [U-13C]Glutamine and [U-13C]Glutamate in Isolated Rat Brain Mitochondria Suggests Functional Phosphate-Activated Glutaminase Activity in Matrix. Neurochemical Research, 2008, 33, 273-278.	1.6	41

#	Article	IF	CITATIONS
127	Metabolism of [1,6-13C]Glucose and [U-13C]Glutamine and Depolarization Induced GABA Release in Superfused Mouse Cerebral Cortical Mini-slices. Neurochemical Research, 2008, 33, 1610-1617.	1.6	6
128	Demonstration of Neuron-Glia Transfer of Precursors for Gaba Biosynthesis in a Co-Culture System of Dissociated Mouse Cerebral Cortex. Neurochemical Research, 2008, 33, 2629-2635.	1.6	18
129	Characterization of 1,4â€dideoxyâ€1,4â€iminoâ€ <scp>d</scp> â€arabinitol (DAB) as an inhibitor of brain glycoger shunt activity. Journal of Neurochemistry, 2008, 105, 1462-1470.	n 2.1	66
130	The micro-architecture of the cerebral cortex: Functional neuroimaging models and metabolism. NeuroImage, 2008, 40, 1436-1459.	2.1	53
131	The metabolic role of isoleucine in detoxification of ammonia in cultured mouse neurons and astrocytes. Neurochemistry International, 2007, 50, 1042-1051.	1.9	56
132	The Transcriptome and Metabolic Gene Signature of Protoplasmic Astrocytes in the Adult Murine Cortex. Journal of Neuroscience, 2007, 27, 12255-12266.	1.7	420
133	GABA: Homeostatic and pharmacological aspects. Progress in Brain Research, 2007, 160, 9-19.	0.9	83
134	Among the branched-chain amino acids, only valine metabolism is up-regulated in astrocytes during glutamate exposure. Journal of Neuroscience Research, 2007, 85, 3465-3470.	1.3	14
135	Energy substrates to support glutamatergic and GABAergic synaptic function: Role of glycogen, glucose and lactate. Neurotoxicity Research, 2007, 12, 263-268.	1.3	47
136	Complex Glutamate Labeling from [U-13C]glucose or [U-13C]lactate in Co-cultures of Cerebellar Neurons and Astrocytes. Neurochemical Research, 2007, 32, 671-680.	1.6	21
137	Neuron-Glia Interaction in Homeostasis of the Neurotransmitters Glutamate and GABA. , 2007, , 111-120.		1
138	Glutamine in the central nervous system: function and dysfunction. Frontiers in Bioscience - Landmark, 2007, 12, 332.	3.0	134
139	Demonstration of extensive GABA synthesis in the small population of GAD positive neurons in cerebellar cultures by the use of pharmacological tools. Neurochemistry International, 2006, 48, 572-578.	1.9	23
140	The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. Journal of Neurochemistry, 2006, 98, 641-653.	2.1	857
141	Glucose is Necessary to Maintain Neurotransmitter Homeostasis during Synaptic Activity in Cultured Glutamatergic Neurons. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 1285-1297.	2.4	153
142	Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: Current evidence and pharmacological tools. Biochemical Pharmacology, 2006, 71, 399-407.	2.0	278
143	Cellular mitochondrial heterogeneity in cultured astrocytes as demonstrated by immunogold labeling of α-ketoglutarate dehydrogenase. Glia, 2006, 53, 225-231.	2.5	47
144	Glial Modulation of GABAergic and Glutamat ergic Neurotransmission. Current Topics in Medicinal Chemistry, 2006, 6, 929-934.	1.0	50

#	Article	IF	CITATIONS
145	Activity of the lactate-alanine shuttle is independent of glutamate-glutamine cycle activity in cerebellar neuronal-astrocytic cultures. Journal of Neuroscience Research, 2005, 79, 88-96.	1.3	40
146	Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter. Journal of Neuroscience Research, 2005, 79, 74-80.	1.3	150
147	Homeostasis of neuroactive amino acids in cultured cerebellar and neocortical neurons is influenced by environmental cues. Journal of Neuroscience Research, 2005, 79, 97-105.	1.3	8
148	Role of astrocytes in glutamate homeostasis: Implications for excitotoxicity. Neurotoxicity Research, 2005, 8, 221-225.	1.3	156
149	Compartmentation of Lactate Originating from Glycogen and Glucose in Cultured Astrocytes. Neurochemical Research, 2005, 30, 1295-1304.	1.6	65
150	Role of glutamine and neuronal glutamate uptake in glutamate homeostasis and synthesis during vesicular release in cultured glutamatergic neurons. Neurochemistry International, 2005, 47, 92-102.	1.9	89
151	First direct demonstration of extensive GABA synthesis in mouse cerebellar neuronal cultures. Journal of Neurochemistry, 2004, 91, 796-803.	2.1	48
152	Role of Astrocytes in Depolarization-Coupled Release of Glutamate in Cerebellar Cultures. Neurochemical Research, 2004, 29, 257-265.	1.6	13
153	Analysis of Glutamine Accumulation in Rat Brain Mitochondria in the Presence of a Glutamine Uptake Inhibitor, Histidine, Reveals Glutamine Pools With a Distinct Access to Deamidation. Neurochemical Research, 2004, 29, 2121-2123.	1.6	29
154	Intracellular metabolic compartmentation assessed by 13C magnetic resonance spectroscopy. Neurochemistry International, 2004, 45, 305-310.	1.9	42
155	Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission. Neurochemistry International, 2004, 45, 521-527.	1.9	143
156	Neuronal–Astrocytic Interactions(TCA Cycling). , 2004, , 111-123.		0
157	Differential roles of alanine in GABAergic and glutamatergic neurons. Neurochemistry International, 2003, 43, 311-315.	1.9	54
158	Characterization of depolarization-coupled release of glutamate from cultured mouse cerebellar granule cells using dl-threo-β-benzyloxyaspartate (DL-TBOA) to distinguish between the vesicular and cytoplasmic pools. Neurochemistry International, 2003, 43, 417-424.	1.9	35
159	Compartmentation of Glutamine, Glutamate, and GABA Metabolism in Neurons and Astrocytes: Functional Implications. Neuroscientist, 2003, 9, 398-403.	2.6	110
160	Role of astrocytes in homeostasis of glutamate and GABA during physiological and pathophysiological conditions. Advances in Molecular and Cell Biology, 2003, 31, 461-474.	0.1	24
161	A Possible Role of Alanine for Ammonia Transfer Between Astrocytes and Glutamatergic Neurons. Journal of Neurochemistry, 2002, 75, 471-479.	2.1	173
162	The GABA Paradox. Journal of Neurochemistry, 2002, 73, 1335-1342.	2.1	140

#	Article	IF	CITATIONS
163	Demonstration of pyruvate recycling in primary cultures of neocortical astrocytes but not in neurons. Neurochemical Research, 2002, 27, 1431-1437.	1.6	80
164	Differential expression of glutamate dehydrogenase in cultured neurons and astrocytes from mouse cerebellum and cerebral cortex. Journal of Neuroscience Research, 2001, 66, 909-913.	1.3	55
165	Elucidation of the quantitative significance of pyruvate carboxylation in cultured cerebellar neurons and astrocytes. Journal of Neuroscience Research, 2001, 66, 763-770.	1.3	71
166	Metabolic distinction between vesicular and cytosolic GABA in cultured GABAergic neurons using13C magnetic resonance spectroscopy. Journal of Neuroscience Research, 2001, 63, 347-355.	1.3	73
167	Multiple compartments with different metabolic characteristics are involved in biosynthesis of intracellular and released glutamine and citrate in astrocytes. Glia, 2001, 35, 246-252.	2.5	80
168	Comparison of effects of DL-threo-beta-benzyloxyaspartate (DL-TBOA) and L-trans-pyrrolidine-2,4-dicarboxylate (t-2,4-PDC) on uptake and release of [3h]D-aspartate in astrocytes and glutamatergic neurons. Neurochemical Research, 2001, 26, 661-666.	1.6	61
169	Compartmentation of TCA cycle metabolism in cultured neocortical neurons revealed by 13C MR spectroscopy. Neurochemistry International, 2000, 36, 349-358.	1.9	48
170	The effects of isofagomine, a potent glycogen phosphorylase inhibitor, on glycogen metabolism in cultured mouse cortical astrocytes. Neurochemistry International, 2000, 36, 435-440.	1.9	37
171	Mitochondrial Compartmentation at the Cellular Level: Astrocytes and Neurons. Annals of the New York Academy of Sciences, 1999, 893, 421-426.	1.8	16
172	Synthesis of vesicular GABA from glutamine involves TCA cycle metabolism in neocortical neurons. Journal of Neuroscience Research, 1999, 57, 342-349.	1.3	61
173	Metabolism of Lactate in Cultured GABAergic Neurons Studied by 13C Nuclear Magnetic Resonance Spectroscopy. Journal of Cerebral Blood Flow and Metabolism, 1998, 18, 109-117.	2.4	89
174	Comparison of Lactate and Glucose Metabolism in Cultured Neocortical Neurons and Astrocytes Using ¹³ C-NMR Spectroscopy. Developmental Neuroscience, 1998, 20, 310-320.	1.0	132
175	Trafficking between glia and neurons of TCA cycle intermediates and related metabolites. , 1997, 21, 99-105.		180
176	Trafficking between glia and neurons of TCA cycle intermediates and related metabolites. Glia, 1997, 21, 99-105.	2.5	4
177	Glial cell biology. , 0, , 121-128.		0