
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9375653/publications.pdf Version: 2024-02-01

SHU-MING LL

#	Article	IF	CITATIONS
1	Increasing Structural Diversity of Prenylated Chalcones by Two Fungal Prenyltransferases. Journal of Agricultural and Food Chemistry, 2022, 70, 1610-1617.	2.4	9
2	Biosynthesis of Guatrypmethine C Implies Two Different Oxidases for <i>exo</i> Double Bond Installation at the Diketopiperazine Ring. ACS Catalysis, 2022, 12, 648-654.	5.5	14
3	Cucumber-Derived Exosome-like Vesicles and PlantCrystals for Improved Dermal Drug Delivery. Pharmaceutics, 2022, 14, 476.	2.0	20
4	Widely Distributed Bifunctional Bacterial Cytochrome P450 Enzymes Catalyze both Intramolecular Câ^'C Bond Formation in <i>cyclo</i> â€ <scp>l</scp> â€Tyrâ€ <scp>l</scp> â€Tyrâ€ <scp>l</scp> â€Tyr and Its Coupling with Nucleobases. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
5	Biosynthesis of Viridicatol in <i>Penicillium palitans</i> Implies a Cytochrome P450-Mediated <i>meta</i> Hydroxylation at a Monoalkylated Benzene Ring. Organic Letters, 2022, 24, 262-267.	2.4	6
6	Formation of 3-Orsellinoxypropanoic Acid in <i>Penicillum crustosum</i> is Catalyzed by a Bifunctional Nonreducing Polyketide Synthase. Organic Letters, 2022, 24, 462-466.	2.4	4
7	Biosynthesis of Xylariolide D in Penicillium crustosum Implies a Chain Branching Reaction Catalyzed by a Highly Reducing Polyketide Synthase. Journal of Fungi (Basel, Switzerland), 2022, 8, 493.	1.5	1
8	Fungal benzene carbaldehydes: occurrence, structural diversity, activities and biosynthesis. Natural Product Reports, 2021, 38, 240-263.	5.2	14
9	Reprogramming Substrate and Catalytic Promiscuity of Tryptophan Prenyltransferases. Journal of Molecular Biology, 2021, 433, 166726.	2.0	12
10	New insights into the disulfide bond formation enzymes in epidithiodiketopiperazine alkaloids. Chemical Science, 2021, 12, 4132-4138.	3.7	20
11	Benzoyl ester formation in Aspergillus ustus by hijacking the polyketide acyl intermediates with alcohols. Archives of Microbiology, 2021, 203, 1795-1800.	1.0	3
12	Naturally occurring prenylated chalcones from plants: structural diversity, distribution, activities and biosynthesis. Natural Product Reports, 2021, 38, 2236-2260.	5.2	30
13	Heterologous expression of a single fungal HR-PKS leads to the formation of diverse 2-alkenyl-tetrahydropyrans in model fungi. Organic and Biomolecular Chemistry, 2021, 19, 8377-8383.	1.5	1
14	Modifications of diketopiperazines assembled by cyclodipeptide synthases with cytochrome P450 enzymes. Applied Microbiology and Biotechnology, 2021, 105, 2277-2285.	1.7	27
15	Oxepin Formation in Fungi Implies Specific and Stereoselective Ring Expansion. Organic Letters, 2021, 23, 2024-2028.	2.4	4
16	Regiospecific 7-O-prenylation of anthocyanins by a fungal prenyltransferase. Bioorganic Chemistry, 2021, 110, 104787.	2.0	3
17	Precursor Supply Increases the Accumulation of 4-Hydroxy-6-(4-hydroxyphenyl)-α-pyrone after NRPS–PKS Gene Expression. Journal of Natural Products, 2021, 84, 2380-2384.	1.5	7
18	A Single Amino Acid Switch Alters the Prenyl Donor Specificity of a Fungal Aromatic Prenyltransferase toward Biflavonoids. Organic Letters, 2021, 23, 497-502.	2.4	8

#	Article	IF	CITATIONS
19	Prenylation and Dehydrogenation of a <i>C</i> 2-Reversely Prenylated Diketopiperazine as a Branching Point in the Biosynthesis of Echinulin Family Alkaloids in <i>Aspergillus ruber</i> . ACS Chemical Biology, 2021, 16, 185-192.	1.6	20
20	Conversion of viridicatic acid to crustosic acid by cytochrome P450 enzyme-catalysed hydroxylation and spontaneous cyclisation. Applied Microbiology and Biotechnology, 2021, 105, 9181-9189.	1.7	11
21	Elucidation of the Streptoazine Biosynthetic Pathway in Streptomyces aurantiacus Reveals the Presence of a Promiscuous Prenyltransferase/Cyclase. Journal of Natural Products, 2021, , .	1.5	10
22	A Type III Polyketide Synthase (SfuPKS1) Isolated from the Edible Seaweed <i>Sargassum fusiforme</i> Exhibits Broad Substrate and Catalysis Specificity. Journal of Agricultural and Food Chemistry, 2021, 69, 14643-14649.	2.4	3
23	Selective geranylation of biflavonoids by <i>Aspergillus terreus</i> aromatic prenyltransferase (AtaPT). Organic and Biomolecular Chemistry, 2020, 18, 28-31.	1.5	7
24	Increasing Structural Diversity of Natural Products by Michael Addition with <i>ortho</i> -Quinone Methide as the Acceptor. Journal of Organic Chemistry, 2020, 85, 1298-1307.	1.7	12
25	Formation of Terrestric Acid inPenicillium crustosumRequires Redox-Assisted Decarboxylation and Stereoisomerization. Organic Letters, 2020, 22, 88-92.	2.4	13
26	Oxepinamide F biosynthesis involves enzymatic d-aminoacyl epimerization, 3H-oxepin formation, and hydroxylation induced double bond migration. Nature Communications, 2020, 11, 4914.	5.8	15
27	Ustethylin Biosynthesis Implies Phenethyl Derivative Formation in <i>Aspergillus ustus</i> . Organic Letters, 2020, 22, 7837-7841.	2.4	12
28	Increasing cytochrome P450 enzyme diversity by identification of two distinct cyclodipeptide dimerases. Chemical Communications, 2020, 56, 11042-11045.	2.2	23
29	Constructing Microbial Hosts for the Production of Benzoheterocyclic Derivatives. ACS Synthetic Biology, 2020, 9, 2282-2290.	1.9	11
30	Reinvestigation of the substrate specificity of a reverse prenyltransferase NotF from Aspergillus sp. MF297-2. Archives of Microbiology, 2020, 202, 1419-1424.	1.0	3
31	Spontaneous oxidative cyclisations of 1,3-dihydroxy-4-dimethylallylnaphthalene to tricyclic derivatives. Organic and Biomolecular Chemistry, 2020, 18, 2646-2649.	1.5	2
32	Biosynthesis of the Prenylated Salicylaldehyde Flavoglaucin Requires Temporary Reduction to Salicyl Alcohol for Decoration before Reoxidation to the Final Product. Organic Letters, 2020, 22, 2256-2260.	2.4	21
33	Isocoumarin formation by heterologous gene expression and modification by host enzymes. Organic and Biomolecular Chemistry, 2020, 18, 4946-4948.	1.5	14
34	Comparative studies on similarities and differences of cyclodipeptide oxidases for installation of C–C double bonds at the diketopiperazine ring. Applied Microbiology and Biotechnology, 2020, 104, 2523-2536.	1.7	10
35	Two Cytochrome P450 Enzymes from <i>Streptomyces</i> sp. NRRL S-1868 Catalyze Distinct Dimerization of Tryptophan-Containing Cyclodipeptides. Organic Letters, 2019, 21, 7094-7098.	2.4	33
36	Coupling of cyclo-l-Trp-l-Trp with Hypoxanthine Increases the Structure Diversity of Guanitrypmycins. Organic Letters, 2019, 21, 9104-9108.	2.4	16

#	Article	IF	CITATIONS
37	Guanitrypmycin Biosynthetic Pathways Imply Cytochrome P450 Mediated Regio―and Stereospecific Guaninylâ€Transfer Reactions. Angewandte Chemie - International Edition, 2019, 58, 11534-11540.	7.2	36
38	Guanitrypmycin Biosynthetic Pathways Imply Cytochrome P450 Mediated Regio―and Stereospecific Guaninylâ€Transfer Reactions. Angewandte Chemie, 2019, 131, 11658-11664.	1.6	7
39	Genomic Locus of a <i>Penicillium crustosum</i> Pigment as an Integration Site for Secondary Metabolite Gene Expression. ACS Chemical Biology, 2019, 14, 1227-1234.	1.6	13
40	Different behaviors of cyclic dipeptide prenyltransferases toward the tripeptide derivative ardeemin fumiquinazoline and its enantiomer. Applied Microbiology and Biotechnology, 2019, 103, 3773-3781.	1.7	4
41	Peniphenone and Penilactone Formation in Penicillium crustosum via 1,4-Michael Additions of ortho-Quinone Methide from Hydroxyclavatol to γ-Butyrolactones from Crustosic Acid. Journal of the American Chemical Society, 2019, 141, 4225-4229.	6.6	36
42	Design of α-Keto Carboxylic Acid Dimers by Domain Recombination of Nonribosomal Peptide Synthetase (NRPS)-Like Enzymes. Organic Letters, 2019, 21, 498-502.	2.4	14
43	Convenient synthetic approach for tri- and tetraprenylated cyclodipeptides by consecutive enzymatic prenylations. Applied Microbiology and Biotechnology, 2018, 102, 2671-2681.	1.7	10
44	Production of α-keto carboxylic acid dimers in yeast by overexpression of NRPS-like genes from Aspergillus terreus. Applied Microbiology and Biotechnology, 2018, 102, 1663-1672.	1.7	16
45	Expanding tryptophan-containing cyclodipeptide synthase spectrum by identification of nine members from Streptomyces strains. Applied Microbiology and Biotechnology, 2018, 102, 4435-4444.	1.7	21
46	Structure-based protein engineering enables prenyl donor switching of a fungal aromatic prenyltransferase. Organic and Biomolecular Chemistry, 2018, 16, 7461-7469.	1.5	19
47	Complete Decoration of the Indolyl Residue in <i>cyclo</i> - <scp>l</scp> -Trp- <scp>l</scp> -Trp with Geranyl Moieties by Using Engineered Dimethylallyl Transferases. Organic Letters, 2018, 20, 7201-7205.	2.4	19
48	A Nonheme Fe ^{II} /2-Oxoglutarate-Dependent Oxygenase Catalyzes a Double Bond Migration within a Dimethylallyl Moiety Accompanied by Hydroxylation. ACS Chemical Biology, 2018, 13, 2949-2955.	1.6	7
49	Switching a regular tryptophan <i>C4</i> -prenyltransferase to a reverse tryptophan-containing cyclic dipeptide <i>C3</i> -prenyltransferase by sequential site-directed mutagenesis. Organic and Biomolecular Chemistry, 2018, 16, 6688-6694.	1.5	7
50	Coupling of Guanine with <i>cyclo</i> - <scp></scp> -Trp- <scp></scp> -Trp Mediated by a Cytochrome P450 Homologue from <i>Streptomyces purpureus</i> . Organic Letters, 2018, 20, 4921-4925.	2.4	32
51	Combinatory Biosynthesis of Prenylated 4-Hydroxybenzoate Derivatives by Overexpression of the Substrate-Promiscuous Prenyltransferase XimB in Engineered <i>E. coli</i> . ACS Synthetic Biology, 2018, 7, 2094-2104.	1.9	23
52	Manipulation of the Precursor Supply in Yeast Significantly Enhances the Accumulation of Prenylated β-Carbolines. ACS Synthetic Biology, 2017, 6, 1056-1064.	1.9	14
53	<i>gem</i> -Diprenylation of Acylphloroglucinols by a Fungal Prenyltransferase of the Dimethylallyltryptophan Synthase Superfamily. Organic Letters, 2017, 19, 388-391.	2.4	19
54	Molecular insights into the enzyme promiscuity of an aromatic prenyltransferase. Nature Chemical Biology, 2017, 13, 226-234.	3.9	100

#	Article	IF	CITATIONS
55	Two Prenyltransferases Govern a Consecutive Prenylation Cascade in the Biosynthesis of Echinulin and Neoechinulin. Organic Letters, 2017, 19, 5928-5931.	2.4	26
56	Mutations of Residues in Pocket P1 of a Cyclodipeptide Synthase Strongly Increase Product Formation. Journal of Natural Products, 2017, 80, 2917-2922.	1.5	27
57	A bifunctional old yellow enzyme from Penicillium roqueforti is involved in ergot alkaloid biosynthesis. Organic and Biomolecular Chemistry, 2017, 15, 8059-8071.	1.5	11
58	Actions of Tryptophan Prenyltransferases Toward Fumiquinazolines and their Potential Application for the Generation of Prenylated Derivatives by Combining Chemical and Chemoenzymatic Syntheses. Advanced Synthesis and Catalysis, 2016, 358, 1639-1653.	2.1	13
59	Saturation mutagenesis on Arg244 of the tryptophan C4-prenyltransferase FgaPT2 leads to enhanced catalytic ability and different preferences for tryptophan-containing cyclic dipeptides. Applied Microbiology and Biotechnology, 2016, 100, 5389-5399.	1.7	20
60	Complementary Flavonoid Prenylations by Fungal Indole Prenyltransferases. Journal of Natural Products, 2015, 78, 2229-2235.	1.5	18
61	Site-directed Mutagenesis Switching a Dimethylallyl Tryptophan Synthase to a Specific Tyrosine C3-Prenylating Enzyme. Journal of Biological Chemistry, 2015, 290, 1364-1373.	1.6	19
62	Friedel–Crafts Alkylation of Acylphloroglucinols Catalyzed by a Fungal Indole Prenyltransferase. Journal of Natural Products, 2015, 78, 929-933.	1.5	25
63	Prenyltransferases as key enzymes in primary and secondary metabolism. Applied Microbiology and Biotechnology, 2015, 99, 7379-7397.	1.7	132
64	C7-prenylation of tryptophanyl and O-prenylation of tyrosyl residues in dipeptides by an Aspergillus terreus prenyltransferase. Applied Microbiology and Biotechnology, 2015, 99, 1719-1730.	1.7	17
65	Targeted production of secondary metabolites by coexpression of non-ribosomal peptide synthetase and prenyltransferase genes in Aspergillus. Applied Microbiology and Biotechnology, 2015, 99, 4213-4223.	1.7	15
66	Genome mining of ascomycetous fungi reveals their genetic potential for ergot alkaloid production. Archives of Microbiology, 2015, 197, 701-713.	1.0	6
67	Impacts and perspectives of prenyltransferases of the DMATS superfamily for use in biotechnology. Applied Microbiology and Biotechnology, 2015, 99, 7399-7415.	1.7	47
68	Biosynthetic Pathways of Ergot Alkaloids. Toxins, 2014, 6, 3281-3295.	1.5	106
69	Biochemical Investigations of Two 6â€DMATS Enzymes from <i>Streptomyces</i> Reveal New Features of <scp>L</scp> ‶ryptophan Prenyltransferases. ChemBioChem, 2014, 15, 1030-1039.	1.3	31
70	A promiscuous prenyltransferase from Aspergillus oryzae catalyses C-prenylations of hydroxynaphthalenes in the presence of different prenyl donors. Applied Microbiology and Biotechnology, 2014, 98, 4987-4994.	1.7	13
71	Substrate and catalytic promiscuity of secondary metabolite enzymes: <i>O</i> -prenylation of hydroxyxanthones with different prenyl donors by a bisindolyl benzoquinone <i>C</i> - and <i>N</i> -prenyltransferase. RSC Advances, 2014, 4, 17986-17992.	1.7	11
72	Identification of a brevianamide F reverse prenyltransferase BrePT from Aspergillus versicolor with a broad substrate specificity towards tryptophan-containing cyclic dipeptides. Applied Microbiology and Biotechnology, 2013, 97, 1649-1660.	1.7	38

#	Article	IF	CITATIONS
73	One Substrate – Seven Products with Different Prenylation Positions in Oneâ€6tep Reactions: Prenyltransferases Make it Possible. Advanced Synthesis and Catalysis, 2013, 355, 2659-2666.	2.1	13
74	Catalytic Mechanism of Stereospecific Formation of cis-Configured Prenylated Pyrroloindoline Diketopiperazines by Indole Prenyltransferases. Chemistry and Biology, 2013, 20, 1492-1501.	6.2	43
75	Breaking Cyclic Dipeptide Prenyltransferase Regioselectivity by Unnatural Alkyl Donors. Organic Letters, 2013, 15, 3062-3065.	2.4	26
76	CdpC2PT, a reverse prenyltransferase from Neosartorya fischeri with a distinct substrate preference from known C2-prenyltransferases. Microbiology (United Kingdom), 2013, 159, 2169-2179.	0.7	12
77	Geranylation of Cyclic Dipeptides by the Dimethylallyl Transferase AnaPT Resulting in a Shift of Prenylation Position on the Indole Ring. ChemBioChem, 2013, 14, 2023-2028.	1.3	18
78	Genome mining reveals the presence of a conserved gene cluster for the biosynthesis of ergot alkaloid precursors in the fungal family Arthrodermataceae. Microbiology (United Kingdom), 2012, 158, 1634-1644.	0.7	16
79	Prenyltransferases of the Dimethylallyltryptophan Synthase Superfamily. Methods in Enzymology, 2012, 516, 259-278.	0.4	53
80	Biochemical Characterization of Indole Prenyltransferases. Journal of Biological Chemistry, 2012, 287, 1371-1380.	1.6	70
81	In vitro conversion of chanoclavine-I aldehyde to the stereoisomers festuclavine and pyroclavine controlled by the second reduction step. RSC Advances, 2012, 2, 3662.	1.7	23
82	Breaking the regioselectivity of indole prenyltransferases: identification of regular C3-prenylated hexahydropyrrolo[2,3-b]indoles as side products of the regular C2-prenyltransferase FtmPT1. Organic and Biomolecular Chemistry, 2012, 10, 9262.	1.5	35
83	Identification of the Verruculogen Prenyltransferase FtmPT3 by a Combination of Chemical, Bioinformatic and Biochemical Approaches. ChemBioChem, 2012, 13, 2583-2592.	1.3	25
84	New Insights into the Biosynthesis of Prenylated Xanthones: Xptb from <i>Aspergillus nidulans</i> Catalyses an Oâ€Prenylation of Xanthones. ChemBioChem, 2012, 13, 2764-2771.	1.3	32
85	Structure and Catalytic Mechanism of a Cyclic Dipeptide Prenyltransferase with Broad Substrate Promiscuity. Journal of Molecular Biology, 2012, 422, 87-99.	2.0	66
86	Prenylation at the indole ring leads to a significant increase of cytotoxicity of tryptophan-containing cyclic dipeptides. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3866-3869.	1.0	39
87	Ergot alkaloids: structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes. Natural Product Reports, 2011, 28, 496-510.	5.2	200
88	New insights into ergot alkaloid biosynthesis in Claviceps purpurea: An agroclavine synthase EasG catalyses, via a non-enzymatic adduct with reduced glutathione, the conversion of chanoclavine-I aldehyde to agroclavine. Organic and Biomolecular Chemistry, 2011, 9, 4328.	1.5	48
89	Genome mining and biosynthesis of fumitremorgin-type alkaloids in ascomycetes. Journal of Antibiotics, 2011, 64, 45-49.	1.0	48
90	The tyrosine O-prenyltransferase SirD catalyzes O-, N-, and C-prenylations. Applied Microbiology and Biotechnology, 2011, 89, 1443-1451.	1.7	37

#	Article	IF	CITATIONS
91	Substrate promiscuity of secondary metabolite enzymes: prenylation of hydroxynaphthalenes by fungal indole prenyltransferases. Applied Microbiology and Biotechnology, 2011, 92, 737-748.	1.7	51
92	Formyl migration product of chanoclavineâ€I aldehyde in the presence of the old yellow enzyme FgaOx3 from <i>Aspergillus fumigatus</i> : a NMR structure elucidation. Magnetic Resonance in Chemistry, 2011, 49, 678-681.	1.1	14
93	Prenylation of Flavonoids by Using a Dimethylallyltryptophan Synthase, 7â€DMATS, from <i>Aspergillus fumigatus</i> . ChemBioChem, 2011, 12, 2280-2283.	1.3	34
94	Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I to chanoclavine-I aldehyde catalyzed by a short-chain alcohol dehydrogenase FgaDH. Archives of Microbiology, 2010, 192, 127-134.	1.0	49
95	Structureâ `Function Analysis of an Enzymatic Prenyl Transfer Reaction Identifies a Reaction Chamber with Modifiable Specificity. Journal of the American Chemical Society, 2010, 132, 17849-17858.	6.6	87
96	Prenylated indole derivatives from fungi: structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis. Natural Product Reports, 2010, 27, 57-78.	5.2	431
97	Preparation of pyrrolo[2,3-b]indoles carrying a β-configured reverse C3-dimethylallyl moiety by using a recombinant prenyltransferase CdpC3PT. Organic and Biomolecular Chemistry, 2010, 8, 2430.	1.5	57
98	Ergot alkaloid biosynthesis in Aspergillus fumigatus: Conversion of chanoclavine-I aldehyde to festuclavine by the festuclavine synthase FgaFS in the presence of the old yellow enzyme FgaOx3. Organic and Biomolecular Chemistry, 2010, 8, 3500.	1.5	58
99	Reconstruction of pyrrolo[2,3-b]indoles carrying an α-configured reverse C3-dimethylallyl moiety by using recombinant enzymes. Organic and Biomolecular Chemistry, 2010, 8, 1133.	1.5	33
100	Acetylaszonalenin Biosynthesis in Neosartorya fischeri. Journal of Biological Chemistry, 2009, 284, 100-109.	1.6	148
101	The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14309-14314.	3.3	175
102	Increasing structure diversity of prenylated diketopiperazine derivatives by using a 4-dimethylallyltryptophan synthase. Archives of Microbiology, 2009, 191, 461-466.	1.0	31
103	Applications of dimethylallyltryptophan synthases and other indole prenyltransferases for structural modification of natural products. Applied Microbiology and Biotechnology, 2009, 84, 631-639.	1.7	56
104	Evolution of aromatic prenyltransferases in the biosynthesis of indole derivatives. Phytochemistry, 2009, 70, 1746-1757.	1.4	88
105	Improved tryprostatin B production by heterologous gene expression in Aspergillus nidulans. Fungal Genetics and Biology, 2009, 46, 436-440.	0.9	22
106	FtmOx1, a non-heme Fe(ii) and α-ketoglutarate-dependent dioxygenase, catalyses the endoperoxide formation of verruculogen in Aspergillus fumigatus. Organic and Biomolecular Chemistry, 2009, 7, 4082.	1.5	82
107	Potential of a 7-dimethylallyltryptophan synthase as a tool for production of prenylated indole derivatives. Applied Microbiology and Biotechnology, 2008, 79, 951-961.	1.7	43
108	Ergot Alkaloid Biosynthesis in Aspergillus fumigatus. Journal of Biological Chemistry, 2008, 283, 26859-26868.	1.6	66

#	Article	IF	CITATIONS
109	A 7-dimethylallyltryptophan synthase from Aspergillus fumigatus: overproduction, purification and biochemical characterization. Microbiology (United Kingdom), 2007, 153, 3409-3416.	0.7	92
110	CdpNPT, an N-Prenyltransferase fromAspergillus fumigatus: Overproduction, Purification and Biochemical Characterisation. ChemBioChem, 2007, 8, 1154-1161.	1.3	67
111	Chemoenzymatic Synthesis of Prenylated Indole Derivatives by Using a 4-Dimethylallyltryptophan Synthase fromAspergillus fumigatus. ChemBioChem, 2007, 8, 1298-1307.	1.3	81
112	The Fumitremorgin Gene Cluster of Aspergillus fumigatus : Identification of a Gene Encoding Brevianamide F Synthetase. ChemBioChem, 2006, 7, 1062-1069.	1.3	171
113	Overproduction, purification and characterization of FgaPT2, a dimethylallyltryptophan synthase from Aspergillus fumigatus. Microbiology (United Kingdom), 2005, 151, 1499-1505.	0.7	183
114	Overproduction, purification and characterization of FtmPT1, a brevianamide F prenyltransferase from Aspergillus fumigatus. Microbiology (United Kingdom), 2005, 151, 2199-2207.	0.7	149
115	CloQ, a prenyltransferase involved in clorobiocin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2316-2321.	3.3	111
116	Weit verbreitete bifunktionelle, bakterielle Cytochrom P450 Enzyme katalysieren sowohl eine intramolekulare Câ^'Câ€Bindung in <i>cyclo</i> ― <scp>l</scp> â€Tyr― <scp>l</scp> â€Tyr als auch dessen Verknüpfung mit Nukleinbasen. Angewandte Chemie, 0, , .	1.6	0