List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9375318/publications.pdf Version: 2024-02-01

Ροςλρίο ΝΔοΔ+ετ

#	Article	IF	CITATIONS
1	Electrochemistry and Photoluminescence of Icosahedral Carboranes, Boranes, Metallacarboranes, and Their Derivatives. Chemical Reviews, 2016, 116, 14307-14378.	23.0	401
2	Methods to produce B–C, B–P, B–N and B–S bonds in boron clusters. Chemical Society Reviews, 2013, 42, 3318.	18.7	280
3	Icosahedral boron clusters: a perfect tool for the enhancement of polymer features. Chemical Society Reviews, 2016, 45, 5147-5173.	18.7	259
4	Fluorescence of New <i>o</i> arborane Compounds with Different Fluorophores: Can it be Tuned?. Chemistry - A European Journal, 2014, 20, 9940-9951.	1.7	119
5	The Modulating Possibilities of Dicarbollide Clusters:  Optimizing the Kharasch Catalysts. Journal of the American Chemical Society, 2003, 125, 11830-11831.	6.6	118
6	Boron clusters: Do they receive the deserved interest?. Pure and Applied Chemistry, 2003, 75, 1305-1313.	0.9	117
7	Metallacarboranes and their interactions: theoretical insights and their applicability. Chemical Society Reviews, 2012, 41, 3445.	18.7	117
8	The Distinct Effect of theo-Carboranyl Fragment: Its Influence on the Iâ^'l Distance in R3PI2 Complexes. Angewandte Chemie - International Edition, 2000, 39, 4290-4292.	7.2	102
9	A Discrete Pâ‹â‹îɛɛːlâ‹â‹P Assembly: The Large Influence of Weak Interactions on the31P NMR Spe Phosphane–Diiodine Complexes. Angewandte Chemie - International Edition, 2006, 45, 1270-1272.	ctra of 7.2	102
10	Synthesis and Characterization of New Fluorescent Styrene ontaining Carborane Derivatives: The Singular Quenching Role of a Phenyl Substituent. Chemistry - A European Journal, 2012, 18, 544-553.	1.7	88
11	Procedure for the degradation of 1,2-(PR2)2-1,2-dicarba-closo-dodecaborane(12) and 1-(PR2)-2-R′-1,2-dicarba-closo-dodecaborane(12). Journal of Organometallic Chemistry, 1995, 503, 193-203.	0.8	80
12	Synthesis, Characterization, and Thermal Behavior of Carboranyl–Styrene Decorated Octasilsesquioxanes: Influence of the Carborane Clusters on Photoluminescence. Chemistry - A European Journal, 2013, 19, 17021-17030.	1.7	74
13	High boron content carboranyl-functionalized aryl ether derivatives displaying photoluminescent properties. Dalton Transactions, 2007, , 1898-1903.	1.6	68
14	Synthesis and fluorescence emission of neutral and anionic di- and tetra-carboranyl compounds. Dalton Transactions, 2011, 40, 7541.	1.6	64
15	Carboranyl Units Bringing Unusual Thermal and Structural Properties to Hybrid Materials Prepared by Solâ^'Gel Process. Chemistry of Materials, 2006, 18, 4344-4353.	3.2	63
16	Modulation of Agostic Bâ^'H⇀Ru Bonds inexo-Monophosphino-7,8-Dicarba-nido-undecaborate Derivatives. Organometallics, 1996, 15, 3850-3858.	1.1	58
17	Forced exo-nido rhoda and ruthenacarboranes as catalyst precursors: a review. Journal of Organometallic Chemistry, 2000, 614-615, 48-56.	0.8	57
18	Carboranyl Substituted Siloxanes and Octasilsesquioxanes: Synthesis, Characterization, and Reactivity. Macromolecules, 2008, 41, 8458-8466.	2.2	57

#	Article	IF	CITATIONS
19	Mixed Cobaltacarboranes Incorporating \hat{i} -5-Pyrrolyl and Dicarbollide Ligands. Synthetic Routes, Structures, and Mechanistic Implications. Organometallics, 1997, 16, 1278-1283.	1.1	55
20	Radical reactions catalysed by ruthenium(II) complexes with anionic carborane phosphine ligands: Kharasch addition to olefins and controlled polymerisation. Tetrahedron Letters, 2000, 41, 5347-5351.	0.7	55
21	Polyanionic Aryl Ether Metallodendrimers Based on Cobaltabisdicarbollide Derivatives. Photoluminescent Properties. Macromolecules, 2010, 43, 150-159.	2.2	54
22	A Route toexo-Heterodisubstituted and Monosubstitutedo-Carborane Derivatives. Inorganic Chemistry, 1997, 36, 1719-1723.	1.9	53
23	The Role of C–H··Ĥ–B Interactions in Establishing Rotamer Configurations in Metallabis(dicarbollide) Systems. European Journal of Inorganic Chemistry, 2010, 2010, 2385-2392.	1.0	53
24	Hybrid Xerogels from Dendrimers and Arborols. Chemistry of Materials, 1998, 10, 1795-1804.	3.2	52
25	exo-nido-Monothio- andexo-nido-Monophosphinorhodacarboranes:Â Synthesis, Reactivity, and Catalytic Properties in Alkene Hydrogenationâ€. Organometallics, 1998, 17, 2278-2289.	1.1	51
26	Influential Role of Ethereal Solvent on Organolithium Compounds: The Case of Carboranyllithium. Chemistry - A European Journal, 2012, 18, 3174-3184.	1.7	50
27	Carborane–stilbene dyads: the influence of substituents and cluster isomers on photoluminescence properties. Dalton Transactions, 2017, 46, 2091-2104.	1.6	49
28	Characterization of Magnetic Nanoparticles Coated with Chitosan: A Potential Approach for Enzyme Immobilization. Journal of Nanomaterials, 2018, 2018, 1-11.	1.5	49
29	A Versatile Methodology for the Controlled Synthesis of Photoluminescent Highâ€Boronâ€Content Dendrimers. Chemistry - A European Journal, 2013, 19, 6299-6312.	1.7	48
30	Approaches to the Preparation of Carborane-Containing Carbosilane Compounds. Organic Letters, 2005, 7, 231-233.	2.4	47
31	Olefin cyclopropanation catalysed by half-sandwich ruthenium complexes. Tetrahedron Letters, 2002, 43, 983-987.	0.7	46
32	1-Diphenylphosphino-2-methyl-1,2-dicarba-closo-dodecaborane(12). Acta Crystallographica Section C: Crystal Structure Communications, 1994, 50, 2027-2030.	0.4	45
33	Recent studies on RR′S·C2B9H11 charge-compensated ligands. Journal of Organometallic Chemistry, 2002, 657, 247-255.	0.8	44
34	Highly Stable Neutral and Positively Charged Dicarbollide Sandwich Complexes. Chemistry - A European Journal, 2005, 11, 5637-5647.	1.7	43
35	Modular Construction of Neutral and Anionic Carboranyl-Containing Carbosilane-Based Dendrimers. Macromolecules, 2007, 40, 5644-5652.	2.2	43
36	Fluorescent carborane–vinylstilbene functionalised octasilsesquioxanes: synthesis, structural, thermal and photophysical properties. Journal of Materials Chemistry C, 2017, 5, 10211-10219.	2.7	43

#	Article	IF	CITATIONS
37	Agostic B-H.fwdharw.Ru Bonds in exo-Monophosphino-7,8-dicarba-nido-undecaborate Derivatives. Organometallics, 1995, 14, 3952-3957.	1.1	42
38	Polyanionic Carbosilane and Carbosiloxane Metallodendrimers Based on Cobaltabisdicarbollide Derivatives. Organometallics, 2009, 28, 5550-5559.	1.1	40
39	Contribution of the o-carboranyl fragment to the chemical stability and the 31P-NMR chemical shift in closo-carboranylphosphines. Crystal structure of bis(1-yl-2-methyl-1,2-dicarba-closo-dodecaborane)phenylphosphine. Journal of Organometallic Chemistry. 1999, 592, 22-28.	0.8	38
40	Synthesis of Small Carboranylsilane Dendrons as Scaffolds for Multiple Functionalizations. Organic Letters, 2006, 8, 4549-4552.	2.4	38
41	Half-sandwich ruthenium complexes for the controlled radical polymerisation of vinyl monomers. Inorganic Chemistry Communication, 2002, 5, 941-945.	1.8	37
42	Photoluminescence in Carborane–Stilbene Triads: A Structural, Spectroscopic, and Computational Study. Chemistry - A European Journal, 2016, 22, 13588-13598.	1.7	37
43	Redox-Active Metallacarborane-Decorated Octasilsesquioxanes. Electrochemical and Thermal Properties. Inorganic Chemistry, 2016, 55, 11630-11634.	1.9	36
44	Contribution of the nido-[7,8-C2B9H10]- Anion to the Chemical Stability, Basicity, and 31P NMR Chemical Shift in nido-o-Carboranylmonophosphines. Inorganic Chemistry, 2001, 40, 2587-2594.	1.9	35
45	A Unique Case of Oxidative Addition of Interhalogens IX (X=Cl, Br) to Organodiselone Ligands: Nature of the Chemical Bonding in Asymmetric اتۇزكەتتۇرى Polarised Hypervalent Systems. Chemistry - A European Journal, 2011, 17, 11497-11514.	1.7	35
46	Decorating Poly(alkyl aryl-ether) Dendrimers with Metallacarboranes. Inorganic Chemistry, 2010, 49, 9993-10000.	1.9	34
47	Boron-Functionalized Carbosilanes:Â Insertion of Carborane Clusters into Peripheral Silicon Atoms of Carbosilane Compounds. Organometallics, 2005, 24, 6351-6357.	1.1	33
48	Formation of New η5-Rhodium(III) Complexes from η5-Rh(I) Rhodacarborane-Containing Charge-Compensated Ligands. Organometallics, 2004, 23, 2273-2280.	1.1	32
49	Boosting the Boron Dopant Level in Monolayer Doping by Carboranes. ACS Applied Materials & Interfaces, 2015, 7, 27357-27361.	4.0	32
50	1-Diisopropylphosphino-2-methyl-1,2-dicarba-closo-dodecaborane(12), (1), and 1,2-Bis(diisopropylphosphino)-1,2-dicarba-closo-dodecaborane(12), (2), at 193 K. Acta Crystallographica Section C: Crystal Structure Communications, 1995, 51, 1864-1868.	0.4	31
51	Cyclopropanation reactions catalysed by rhodium(I) complexes with new anionic carborane phosphine ligands. Tetrahedron Letters, 1997, 38, 7879-7882.	0.7	31
52	Boron clusters-based metallodendrimers. Inorganica Chimica Acta, 2014, 409, 12-25.	1.2	31
53	Tetrakis{[(<i>p</i> â€dodecacarboranyl)methyl]stilbenyl}ethylene: A Luminescent Tetraphenylethylene (TPE) Core System. European Journal of Inorganic Chemistry, 2017, 2017, 4575-4580.	1.0	30
54	Fluorescent BODIPY-Anionic Boron Cluster Conjugates as Potential Agents for Cell Tracking. Bioconjugate Chemistry, 2018, 29, 1763-1773.	1.8	29

#	Article	IF	CITATIONS
55	Organotin Dyes Bearing Anionic Boron Clusters as Cell taining Fluorescent Probes. Chemistry - A European Journal, 2018, 24, 5601-5612.	1.7	29
56	Periphery Decorated and Core Initiated Neutral and Polyanionic Borane Large Molecules: Forthcoming and Promising Properties for Medicinal Applications. Current Medicinal Chemistry, 2019, 26, 5036-5076.	1.2	29
57	Cyclopropanation reactions catalysed by ruthenium complexes with new anionic phosphine ligands. Tetrahedron Letters, 1997, 38, 4079-4082.	0.7	27
58	Synthetic approaches to the preparation of hybrid network materials incorporating carborane clusters. New Journal of Chemistry, 2006, 30, 546.	1.4	27
59	Synthesis, reactivity and complexation studies of N,S exo-heterodisubstituted o-carborane ligands. Carborane as a platform to produce the uncommon bidentate chelating (pyridine)N-C-C-C-S(H) motif. Dalton Transactions, 2008, , 345-354.	1.6	27
60	Water-Stable Carborane-Based Eu ³⁺ /Tb ³⁺ Metal–Organic Frameworks for Tunable Time-Dependent Emission Color and Their Application in Anticounterfeiting Bar-Coding. Chemistry of Materials, 2022, 34, 4795-4808.	3.2	27
61	High-Boron-Content Porphyrin-Cored Aryl Ether Dendrimers: Controlled Synthesis, Characterization, and Photophysical Properties. Inorganic Chemistry, 2015, 54, 5021-5031.	1.9	26
62	Formation of Bâ^'P Bonds through the Reaction ofnido-Monophosphinocarboranes with Palladium(II) Complexes. The First Example of a Chelating R2Pâ^'Câ^'Bâ^'PR2Diphosphine. Organometallics, 1999, 18, 4712-4717.	1.1	25
63	Carboraneâ€BODIPY Dyads: New Photoluminescent Materials through an Efficient Heck Coupling. Chemistry - A European Journal, 2018, 24, 15622-15630.	1.7	25
64	Controlled Direct Synthesis of C-Mono- and C-Disubstituted Derivatives of [3,3′-Co(1,2-C2B9H11)2]â^' with Organosilane Groups: Theoretical Calculations Compared with Experimental Results. Chemistry - A European Journal, 2008, 14, 4924-4938.	1.7	23
65	First example of the formation of a Si–C bond from an intramolecular Si–Hâ∢H–C diyhydrogen interaction in a metallacarborane: A theoretical study. Journal of Organometallic Chemistry, 2009, 694, 1764-1770.	0.8	22
66	Anchoring of Phosphorus-Containing Cobaltabisdicarbollide Derivatives to Titania Surface. Langmuir, 2010, 26, 12185-12189.	1.6	22
67	Photoluminescence in <i>m</i> -carborane–anthracene triads: a combined experimental and computational study. Journal of Materials Chemistry C, 2018, 6, 11336-11347.	2.7	20
68	Efficient blue light emitting materials based on <i>m</i> -carborane–anthracene dyads. Structure, photophysics and bioimaging studies. Biomaterials Science, 2019, 7, 5324-5337.	2.6	20
69	1-Diphenylphosphino-1,2-dicarba-closo-dodecaborane(12) at 153 K. Acta Crystallographica Section C: Crystal Structure Communications, 1995, 51, 1868-1870.	0.4	19
70	Synthesis, Characterization, and Dynamic Studies of 12-Vertex η5-Ruthenium(II)closo-Phosphine Complexes with Monoanionic [10-L-nido-7-R-7,8-C2B9H9]-Ligands. Inorganic Chemistry, 2004, 43, 6067-6074.	1.9	19
71	Influence of the solvent and R groups on the structure of (carboranyl)R2PI2 compounds in solution. Crystal structure of the first iodophosphonium salt incorporating the anion [7,8-nido-C2B9H10]â~. Dalton Transactions, 2008, , 1471.	1.6	18
72	Highly Dispersible and Stable Anionic Boron Cluster–Graphene Oxide Nanohybrids. Chemistry - A European Journal, 2016, 22, 5096-5101.	1.7	18

#	Article	IF	CITATIONS
73	Proton Mediated Partial Degradation ofCloso-dicarbaboranes. Inorganic Chemistry, 2001, 40, 3259-3260.	1.9	17
74	Coordination of thenido-carboranyldiphosphine ligand to ruthenium(II): the first example of the tricoordinating capacity of the 7,8-(PPh2)2-7,8-C2B9H10moiety. Applied Organometallic Chemistry, 2003, 17, 509-517.	1.7	17
75	Luminescence properties of carborane-containing distyrylaromatic systems. Journal of Organometallic Chemistry, 2018, 865, 206-213.	0.8	17
76	Radiolabeled Cobaltabis(dicarbollide) Anion–Graphene Oxide Nanocomposites for In Vivo Bioimaging and Boron Delivery. ACS Applied Nano Materials, 2021, 4, 1613-1625.	2.4	17
77	1-Diisopropylphosphino-2-phenyl-1,2-dicarba-closo-dodecaborane(12). Acta Crystallographica Section C: Crystal Structure Communications, 1996, 52, 2223-2225.	0.4	16
78	Versatility ofnido-Monophosphinocarboranes as Ligands. Tricoordination via PPh2and BH in Rhodium(I) Complexes. Organometallics, 1998, 17, 2376-2378.	1.1	16
79	Synthesis and self-assembly of a carborane-containing ABC triblock terpolymer: morphology control on a dual-stimuli responsive system. Polymer Chemistry, 2019, 10, 2774-2780.	1.9	16
80	Tuning the Cell Uptake and Subcellular Distribution in BODIPY–Carboranyl Dyads: An Experimental and Theoretical Study. Chemistry - A European Journal, 2020, 26, 16530-16540.	1.7	16
81	Tuning the architectures and luminescence properties of Cu(<scp>i</scp>) compounds of phenyl and carboranyl pyrazoles: the impact of 2D <i>versus</i> 3D aromatic moieties in the ligand backbone. Journal of Materials Chemistry C, 2021, 9, 7643-7657.	2.7	16
82	<i>></i> -Carborane-based fluorophores as efficient luminescent systems both as solids and as water-dispersible nanoparticles. Chemical Communications, 2022, 58, 4016-4019.	2.2	15
83	Monolayer Contact Doping from a Silicon Oxide Source Substrate. Langmuir, 2017, 33, 3635-3638.	1.6	14
84	Carborane to enhance chelating capacity S,S′-thioether— thioester coordination and its transition metal stability. Journal of Organometallic Chemistry, 1997, 530, 89-94.	0.8	12
85	Blue Emitting Star-Shaped and Octasilsesquioxane-Based Polyanions Bearing Boron Clusters. Photophysical and Thermal Properties. Molecules, 2020, 25, 1210.	1.7	12
86	Ru(<scp>ii</scp>) and lr(<scp>iii</scp>) phenanthroline-based photosensitisers bearing <i>o</i> -carborane: PDT agents with boron carriers for potential BNCT. Biomaterials Science, 2021, 9, 5691-5702.	2.6	11
87	Grafting of Metallacarboranes onto Selfâ€Assembled Monolayers Deposited on Silicon Wafers. Chemistry - an Asian Journal, 2012, 7, 277-281.	1.7	10
88	Efficient Chemical Modification of Carbon Nanotubes with Metallacarboranes. Chemistry - A European Journal, 2015, 21, 16792-16795.	1.7	10
89	Reversibly Switchable Fluorescent Molecular Systems Based on Metallacarborane–Perylenediimide Conjugates. Chemistry - A European Journal, 2021, 27, 270-280.	1.7	10
90	Farâ€Red and Nearâ€Infrared Boron Schiff Bases (BOSCHIBAs) Dyes Bearing Anionic Boron Clusters. European Journal of Inorganic Chemistry, 2021, 2021, 2047-2054.	1.0	9

#	Article	IF	CITATIONS
91	Red light-emitting Carborane-BODIPY dyes: Synthesis and properties of visible-light tuned fluorophores with enhanced boron content. Dyes and Pigments, 2021, 194, 109644.	2.0	9
92	Phosphine–boranes incorporating the carborane cluster. Journal of Organometallic Chemistry, 2002, 657, 224-231.	0.8	8
93	New sodium organobis(silantriolates). Chemical Communications, 1998, , 2309-2310.	2.2	7
94	Intramolecular Communication in Anionic Oxidized Phosphanes through a Chelated Proton. Chemistry - A European Journal, 2015, 21, 8613-8625.	1.7	7
95	Sodium, calcium, aluminium, zinc and europium salts of p-phenylenebis(silanetriolate). Access to a new class of organosilicates. Journal of the Chemical Society Dalton Transactions, 1999, , 4535-4540.	1.1	6
96	Anthracene–styrene-substituted <i>m</i> -carborane derivatives: insights into the electronic and structural effects of substituents on photoluminescence. Inorganic Chemistry Frontiers, 2020, 7, 2370-2380.	3.0	6
97	Controlled Radical Polymerization Catalyzed by Ruthenium Complexes: Variations on Ru-Cp [#] . ACS Symposium Series, 2003, , 116-129.	0.5	5
98	Large Molecules Containing Icosahedral Boron Clusters Designed for Potential Applications. , 2011, , 701-740.		4
99	Tuning the Liquid Crystallinity of Cholesteryl-o-Carborane Dyads: Synthesis, Structure, Photoluminescence, and Mesomorphic Properties. Crystals, 2021, 11, 133.	1.0	4
100	η5-(3)-1-Methyl-1,2-dicarbollyl-η5-2′,5′-dimethylpyrrolylcobalt(III). Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 900-901.	0.4	2
101	Advances in the catalytic and photocatalytic behavior of carborane derived metal complexes. Advances in Catalysis, 2022, , 1-45.	0.1	2
102	Coordination of the nido-Carboranyldiphosphine Ligand to Ruthenium(II): The First Example of the Tricoordinating Capacity of the 7,8-(PPh2)2-7,8-C2B9H10 Moiety ChemInform, 2003, 34, no.	0.1	0
103	Frontispiece: Highly Dispersible and Stable Anionic Boron Cluster–Graphene Oxide Nanohybrids. Chemistry - A European Journal, 2016, 22, .	1.7	0