
Göran I Ãgren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9375266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigating soil carbon diversity by combining the MAXimum ENTropy principle with the Q model. Biogeochemistry, 2021, 153, 85-94.	1.7	2
2	Multi-Dimensional Plant Element Stoichiometry—Looking Beyond Carbon, Nitrogen, and Phosphorus. Frontiers in Plant Science, 2020, 11, 23.	1.7	25
3	Ectomycorrhiza, Friend or Foe?. Ecosystems, 2019, 22, 1561-1572.	1.6	12
4	Generic parameters of first-order kinetics accurately describe soil organic matter decay in bare fallow soils over a wide edaphic and climatic range. Scientific Reports, 2019, 9, 20319.	1.6	16
5	Modelling Dissolved Organic Carbon Production in Coniferous Forest Soils. Soil Science Society of America Journal, 2018, 82, 1392-1403.	1.2	4
6	Nitrogen productivity and allocation responses of 12 important tree species to increased CO2. Trees - Structure and Function, 2017, 31, 617-621.	0.9	4
7	Carbon balances of bioenergy systems using biomass from forests managed with long rotations: bridging the gap between stand and landscape assessments. GCB Bioenergy, 2017, 9, 1238-1251.	2.5	24
8	Modelling the influence of ectomycorrhizal decomposition on plant nutrition and soil carbon sequestration in boreal forest ecosystems. New Phytologist, 2017, 213, 1452-1465.	3.5	71
9	The climate effect of increased forest bioenergy use in Sweden: evaluation at different spatial and temporal scales. Wiley Interdisciplinary Reviews: Energy and Environment, 2016, 5, 351-369.	1.9	35
10	Production and turnover of ectomycorrhizal extramatrical mycelial biomass and necromass under elevated CO ₂ and nitrogen fertilization. New Phytologist, 2016, 211, 874-885.	3.5	60
11	Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature, 2014, 513, 81-84.	13.7	528
12	Soil organic carbon stock changes in Swedish forest soils—A comparison of uncertainties and their sources through a national inventory and two simulation models. Ecological Modelling, 2013, 251, 221-231.	1.2	46
13	Forest carbon balances at the landscape scale investigated with the Q model and the CoupModel – Responses to intensified harvests. Forest Ecology and Management, 2013, 290, 67-78.	1.4	36
14	Dynamics of soil C, N and Ca in four Swedish forests after removal of tops, branches and stumps as predicted by the Q model. Scandinavian Journal of Forest Research, 2012, 27, 774-786.	0.5	18
15	Plant stoichiometry at different scales: element concentration patterns reflect environment more than genotype. New Phytologist, 2012, 194, 944-952.	3.5	159
16	Nutrient limitation on terrestrial plant growth – modeling the interaction between nitrogen and phosphorus. New Phytologist, 2012, 194, 953-960.	3.5	320
17	Environmental and stoichiometric controls on microbial carbonâ€use efficiency in soils. New Phytologist, 2012, 196, 79-91.	3.5	1,046
18	When will litter mixtures decompose faster or slower than individual litters? A model for two litters. Oikos, 2012, 121, 1112-1120.	1.2	40

Göran I Ã...gren

#	Article	IF	CITATIONS
19	Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward. Global Change Biology, 2011, 17, 3392-3404.	4.2	1,143
20	Knowledge gaps in soil carbon and nitrogen interactions – From molecular to global scale. Soil Biology and Biochemistry, 2011, 43, 702-717.	4.2	195
21	Feedback from soil inorganic nitrogen on soil organic matter mineralisation and growth in a boreal forest ecosystem. Plant and Soil, 2011, 338, 193-203.	1.8	13
22	Temperature sensitivity and substrate quality in soil organic matter decomposition: results of an incubation study with three substrates. Global Change Biology, 2010, 16, 1806-1819.	4.2	122
23	Relationships Between Tree and Soil Properties in Picea abies and Pinus sylvestris Forests in Sweden. Ecosystems, 2010, 13, 302-316.	1.6	47
24	Effects of variations in simulated changes in soil carbon contents and dynamics on future climate projections. Global Change Biology, 2010, 16, 823-835.	4.2	34
25	Microbial mitigation. Nature Geoscience, 2010, 3, 303-304.	5.4	17
26	Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry, 2008, 89, 121-137.	1.7	274
27	Pools and fluxes of carbon in three Norway spruce ecosystems along a climatic gradient in Sweden. Biogeochemistry, 2008, 89, 7-25.	1.7	99
28	Are Swedish forest soils sinks or sources for CO2—model analyses based on forest inventory data. Biogeochemistry, 2008, 89, 139-149.	1.7	26
29	Stoichiometry and Nutrition of Plant Growth in Natural Communities. Annual Review of Ecology, Evolution, and Systematics, 2008, 39, 153-170.	3.8	446
30	Response to comments on "Root respiration data and minirhizotron observations conflict with root turnover estimates from sequential soil coring― Scandinavian Journal of Forest Research, 2007, 22, 473-474.	0.5	1
31	Root respiration data and minirhizotron observations conflict with root turnover estimates from sequential soil coring. Scandinavian Journal of Forest Research, 2007, 22, 299-303.	0.5	12
32	Simulated mechanisms of soil N feedback on the forest CO2response. Global Change Biology, 2007, 13, 1265-1281.	4.2	16
33	The likely impact of elevated [CO 2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytologist, 2007, 173, 463-480.	3.5	579
34	Are Swedish forest soils sinks or sources for CO2—model analyses based on forest inventory data. Biogeochemistry, 2007, 82, 217-227.	1.7	57
35	Farmers' local knowledge and topsoil properties of agroforestry practices in Sidama, Southern Ethiopia. Agroforestry Systems, 2007, 71, 35-48.	0.9	47
36	The response of heterotrophic CO2 flux to soil warming. Global Change Biology, 2005, 11, 167-181.	4.2	301

GöRAN I Ã...GREN

#	Article	IF	CITATIONS
37	Analysing temperature response of decomposition of organic matter. Global Change Biology, 2005, 11, 770-778.	4.2	37
38	Modeling Response of N Addition on C and N Allocation in Scandinavian Norway Spruce Stands. Ecosystems, 2005, 8, 373-381.	1.6	11
39	Measuring Fine Root Turnover in Forest Ecosystems. Plant and Soil, 2005, 276, 1-8.	1.8	198
40	TERRESTRIAL C SEQUESTRATION AT ELEVATED CO2AND TEMPERATURE: THE ROLE OF DISSOLVED ORGANIC N LOSS. , 2005, 15, 71-86.		38
41	The Câ€f:â€fNâ€f:â€fP stoichiometry of autotrophs - theory and observations. Ecology Letters, 2004, 7, 185-19)13.0	390
42	Temperature sensitivity of nitrogen productivity for Scots pine and Norway spruce. Trees - Structure and Function, 2004, 18, 312-319.	0.9	11
43	CARBON SEQUESTRATION IN ECOSYSTEMS: THE ROLE OF STOICHIOMETRY. Ecology, 2004, 85, 1179-1192.	1.5	476
44	Pine Forest Floor Carbon Accumulation in Response to N and PK Additions: Bomb 14 C Modelling and Respiration Studies. Ecosystems, 2003, 6, 644-658.	1.6	106
45	Exact solutions to the continuous-quality equation for soil organic matter turnover. Journal of Theoretical Biology, 2003, 224, 97-105.	0.8	55
46	Root : Shoot Ratios, Optimization and Nitrogen Productivity. Annals of Botany, 2003, 92, 795-800.	1.4	211
47	Reconciling differences in predictions of temperature response of soil organic matter. Soil Biology and Biochemistry, 2002, 34, 129-132.	4.2	95
48	Modelling carbon dynamics in coniferous forest soils in a temperature gradient. Plant and Soil, 2002, 242, 33-39.	1.8	14
49	Decomposer invasion rate, decomposer growth rate, and substrate chemical quality: how they influence soil organic matter turnover. Canadian Journal of Forest Research, 2001, 31, 1594-1601.	0.8	53
50	Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oecologia, 2001, 128, 94-98.	0.9	232
51	Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oecologia, 2001, 128, 464-464.	0.9	40
52	Organic matter quality in ecological studies: theory meets experiment. Oikos, 2001, 93, 451-458.	1.2	71
53	Effects of Plant Growth Characteristics on Biogeochemistry and Community Composition in a Changing Climate. Ecosystems, 1999, 2, 367-382.	1.6	40
54	Soil organic matter quality interpreted thermodynamically. Soil Biology and Biochemistry, 1999, 31, 1889-1891.	4.2	381

GöRAN I Ã...GREN

#	Article	IF	CITATIONS
55	Predicting Longâ€Term Soil Carbon Storage from Shortâ€Term Information. Soil Science Society of America Journal, 1998, 62, 1000-1005.	1.2	36
56	RESPONSES OF N-LIMITED ECOSYSTEMS TO INCREASED CO2: A BALANCED-NUTRITION, COUPLED-ELEMENT-CYCLES MODEL. , 1997, 7, 444-460.		213
57	Theoretical analyses of soil texture effects on organic matter dynamics. Soil Biology and Biochemistry, 1997, 29, 1633-1638.	4.2	62
58	Modeling biological systems. Forest Ecology and Management, 1997, 96, 185-186.	1.4	8
59	lsotope Discrimination during Decomposition of Organic Matter: A Theoretical Analysis. Soil Science Society of America Journal, 1996, 60, 1121-1126.	1.2	227
60	Quality: A Bridge between Theory and Experiment in Soil Organic Matter Studies. Oikos, 1996, 76, 522.	1.2	122
61	Nitrogen Productivity or Photosynthesis Minus Respiration to Calculate Plant Growth?. Oikos, 1996, 76, 529.	1.2	29
62	Plant nutrition and growth: Basic principles. Plant and Soil, 1995, 168-169, 15-20.	1.8	58
63	Plant nutrition and growth: Basic principles. , 1995, , 15-20.		20
64	Theories and methods on plant nutrition and growth. Physiologia Plantarum, 1992, 84, 177-184.	2.6	175
65	Theoretical Analysis of Carbon and Nutrient Interactions in Soils under Energy-Limited Conditions. Soil Science Society of America Journal, 1991, 55, 728-733.	1.2	26
66	The Influence of Plant Nutrition on Biomass Allocation. , 1991, 1, 168-174.		171
67	Dynamics of Carbon and Nitrogen in the Organic Matter of the Soil: A Generic Theory. American Naturalist, 1991, 138, 227-245.	1.0	145
68	Theory and model or art and technology in ecology. Ecological Modelling, 1990, 50, 213-220.	1.2	17
69	Nutrient uptake and allocation at steadyâ€state nutrition. Physiologia Plantarum, 1988, 72, 450-459.	2.6	151
70	Theoretical Analysis of the Long-Term Dynamics of Carbon and Nitrogen in Soils. Ecology, 1987, 68, 1181-1189.	1.5	142
71	Limits to plant production. Journal of Theoretical Biology, 1985, 113, 89-92.	0.8	42
72	Theory for growth of plants derived from the nitrogen productivity concept. Physiologia Plantarum, 1985, 64, 17-28.	2.6	253

GöRAN I Ã...GREN

#	Article	IF	CITATIONS
73	Aerosol depletion and deposition in forests—A model analysis. Atmospheric Environment, 1985, 19, 335-347.	1.1	87
74	Aerosol concentration profiles within a mature coniferous forest—Model versus field results. Atmospheric Environment, 1985, 19, 363-367.	1.1	17
75	Limiting Dissimilarity in Plants: Randomness Prevents Exclusion of Species with Similar Competitive Abilities. Oikos, 1984, 43, 369.	1.2	103
76	Increased or Decreased Separation of Flowering Times? The Joint Effect of Competition for Space and Pollination in Plants. Oikos, 1980, 35, 161.	1.2	15
77	Population respiration: A theoretical approach. Ecological Modelling, 1980, 11, 39-54.	1.2	53
78	Theory for Coexistence of Species Differing in Regeneration Properties. Oikos, 1979, 33, 1.	1.2	49
79	Mixture of hard spherocylinders and spheres in the virial expansion. Physical Review A, 1975, 11, 1040-1042	1.0	15