

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9375205/publications.pdf Version: 2024-02-01

Κνιι Υ Ρηγγ

#	Article	IF	CITATIONS
1	Metabolomics of Mycobacterium tuberculosis Reveals Compartmentalized Co-Catabolism of Carbon Substrates. Chemistry and Biology, 2010, 17, 1122-1131.	6.2	313
2	Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for <i>Mycobacterium tuberculosis</i> to establish and maintain infection. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9819-9824.	3.3	299
3	A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy. Nature Communications, 2010, 1, 57.	5.8	250
4	Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6554-6559.	3.3	246
5	High-fructose corn syrup enhances intestinal tumor growth in mice. Science, 2019, 363, 1345-1349.	6.0	243
6	lsocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis. Nature Communications, 2014, 5, 4306.	5.8	228
7	Selective Killing of Nonreplicating Mycobacteria. Cell Host and Microbe, 2008, 3, 137-145.	5.1	180
8	<i>Para</i> -Aminosalicylic Acid Acts as an Alternative Substrate of Folate Metabolism in <i>Mycobacterium tuberculosis</i> . Science, 2013, 339, 88-91.	6.0	178
9	A genetic strategy to identify targets for the development of drugs that prevent bacterial persistence. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19095-19100.	3.3	167
10	S-nitroso proteome of Mycobacterium tuberculosis: Enzymes of intermediary metabolism and antioxidant defense. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 467-472.	3.3	165
11	Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis. Nature Reviews Microbiology, 2018, 16, 496-507.	13.6	162
12	Central carbon metabolism in Mycobacterium tuberculosis: an unexpected frontier. Trends in Microbiology, 2011, 19, 307-314.	3.5	156
13	Depletion of antibiotic targets has widely varying effects on growth. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4176-4181.	3.3	141
14	Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of <1>Mycobacterium tuberculosis 1 on fatty acids. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4976-4981.	3.3	138
15	Dietary fructose improves intestinal cell survival and nutrient absorption. Nature, 2021, 597, 263-267.	13.7	133
16	Evaluating the Sensitivity of Mycobacterium tuberculosis to Biotin Deprivation Using Regulated Gene Expression. PLoS Pathogens, 2011, 7, e1002264.	2.1	127
17	Ergothioneine Maintains Redox and Bioenergetic Homeostasis Essential for Drug Susceptibility and Virulence of Mycobacterium tuberculosis. Cell Reports, 2016, 14, 572-585.	2.9	124
18	Virulence of Mycobacterium tuberculosis Depends on Lipoamide Dehydrogenase, a Member of Three Multienzyme Complexes. Cell Host and Microbe, 2011, 9, 21-31.	5.1	115

Күи Ү Кнее

#	Article	IF	CITATIONS
19	Activity-Based Metabolomic Profiling of Enzymatic Function: Identification of Rv1248c as a Mycobacterial 2-Hydroxy-3-oxoadipate Synthase. Chemistry and Biology, 2010, 17, 323-332.	6.2	104
20	Glucose Phosphorylation Is Required for Mycobacterium tuberculosis Persistence in Mice. PLoS Pathogens, 2013, 9, e1003116.	2.1	97
21	Mitochondrial ClpX Activates a Key Enzyme for Heme Biosynthesis and Erythropoiesis. Cell, 2015, 161, 858-867.	13.5	95
22	Hierarchical expression of genes controlled by the <i>Bacillus subtilis</i> global regulatory protein CodY. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8227-8232.	3.3	88
23	<i>N</i> -methylation of a bactericidal compound as a resistance mechanism in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4523-30.	3.3	88
24	Metabolic anticipation in Mycobacterium tuberculosis. Nature Microbiology, 2017, 2, 17084.	5.9	85
25	Glyoxylate detoxification is an essential function of malate synthase required for carbon assimilation in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2225-E2232.	3.3	82
26	A spectrum of CodY activities drives metabolic reorganization and virulence gene expression in <i>Staphylococcus aureus</i> . Molecular Microbiology, 2016, 101, 495-514.	1.2	81
27	Verapamil Targets Membrane Energetics in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	79
28	Tuberculosis Drug Development: History and Evolution of the Mechanism-Based Paradigm : Figure 1 Cold Spring Harbor Perspectives in Medicine, 2015, 5, a021147.	2.9	77
29	Essential but Not Vulnerable: Indazole Sulfonamides Targeting Inosine Monophosphate Dehydrogenase as Potential Leads against <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2017, 3, 18-33.	1.8	77
30	Pyrazolo[1,5- <i>a</i>]pyridine Inhibitor of the Respiratory Cytochrome <i>bcc</i> Complex for the Treatment of Drug-Resistant Tuberculosis. ACS Infectious Diseases, 2019, 5, 239-249.	1.8	74
31	Folate Pathway Disruption Leads to Critical Disruption of Methionine Derivatives in Mycobacterium tuberculosis. Chemistry and Biology, 2014, 21, 819-830.	6.2	70
32	Microbial metabolomics: innovation, application, insight. Current Opinion in Microbiology, 2014, 19, 90-96.	2.3	65
33	Inactivation of Fructose-1,6-Bisphosphate Aldolase Prevents Optimal Co-catabolism of Glycolytic and Gluconeogenic Carbon Substrates in Mycobacterium tuberculosis. PLoS Pathogens, 2014, 10, e1004144.	2.1	64
34	Validation of CoaBC as a Bactericidal Target in the Coenzyme A Pathway of <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2016, 2, 958-968.	1.8	62
35	Mycobacterial genes essential for the pathogen's survival in the host. Immunological Reviews, 2015, 264, 319-326.	2.8	59
36	Multisystem Analysis of <i>Mycobacterium tuberculosis</i> Reveals Kinase-Dependent Remodeling of the Pathogen-Environment Interface. MBio, 2018, 9, .	1.8	57

Күи Ү Rнее

#	Article	IF	CITATIONS
37	E1 of α-ketoglutarate dehydrogenase defends <i>Mycobacterium tuberculosis</i> against glutamate anaplerosis and nitroxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5834-43.	3.3	55
38	Crosstalk between the tricarboxylic acid cycle and peptidoglycan synthesis in Caulobacter crescentus through the homeostatic control of α-ketoglutarate. PLoS Genetics, 2017, 13, e1006978.	1.5	55
39	Two enzymes with redundant fructose bisphosphatase activity sustain gluconeogenesis and virulence in Mycobacterium tuberculosis. Nature Communications, 2015, 6, 7912.	5.8	54
40	Dissociation of Adaptive Thermogenesis from Glucose Homeostasis in Microbiome-Deficient Mice. Cell Metabolism, 2020, 31, 592-604.e9.	7.2	54
41	Opposing reactions in coenzyme A metabolism sensitize <i>Mycobacterium tuberculosis</i> to enzyme inhibition. Science, 2019, 363, .	6.0	53
42	Mycobacterium Tuberculosis Metabolism and Host Interaction: Mysteries and Paradoxes. Current Topics in Microbiology and Immunology, 2012, 374, 163-188.	0.7	51
43	2-Mercapto-Quinazolinones as Inhibitors of Type II NADH Dehydrogenase and <i>Mycobacterium tuberculosis</i> : Structure–Activity Relationships, Mechanism of Action and Absorption, Distribution, Metabolism, and Excretion Characterization. ACS Infectious Diseases, 2018, 4, 954-969.	1.8	49
44	Triosephosphate Isomerase Is Dispensable <i>In Vitro</i> yet Essential for Mycobacterium tuberculosis To Establish Infection. MBio, 2014, 5, e00085.	1.8	48
45	Mass Spectrometric Identification of Urinary Biomarkers of Pulmonary Tuberculosis. EBioMedicine, 2018, 31, 157-165.	2.7	46
46	Metabolomics of Mycobacterium tuberculosis. Methods in Molecular Biology, 2015, 1285, 105-115.	0.4	45
47	Rac-Mediated Macropinocytosis of Extracellular Protein Promotes Glucose Independence in Non-Small Cell Lung Cancer. Cancers, 2019, 11, 37.	1.7	45
48	The membrane protein ANKH is crucial for bone mechanical performance by mediating cellular export of citrate and ATP. PLoS Genetics, 2020, 16, e1008884.	1.5	45
49	Fumarase Deficiency Causes Protein and Metabolite Succination and Intoxicates Mycobacterium tuberculosis. Cell Chemical Biology, 2017, 24, 306-315.	2.5	44
50	Aspartate aminotransferase Rv3722c governs aspartate-dependent nitrogen metabolism in Mycobacterium tuberculosis. Nature Communications, 2020, 11, 1960.	5.8	44
51	Targeting <i>Mycobacterium tuberculosis</i> Biotin Protein Ligase (MtBPL) with Nucleoside-Based Bisubstrate Adenylation Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 7349-7369.	2.9	39
52	Mode-of-action profiling reveals glutamine synthetase as a collateral metabolic vulnerability of <i>M. tuberculosis</i> to bedaquiline. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19646-19651.	3.3	38
53	Synergistic Lethality of a Binary Inhibitor of Mycobacterium tuberculosis KasA. MBio, 2018, 9, .	1.8	37
54	Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis. Journal of Biological Chemistry, 2016, 291, 7060-7069.	1.6	35

Куи Ү Кнее

#	Article	IF	CITATIONS
55	Risk factors and outcomes of infections caused by extremely drug-resistant gram-negative bacilli in patients hospitalized in intensive care units. American Journal of Infection Control, 2014, 42, 626-631.	1.1	33
56	The Tuberculosis Drug Accelerator at year 10: what have we learned?. Nature Medicine, 2021, 27, 1333-1337.	15.2	32
57	Growth of <i>Mycobacterium tuberculosis</i> at acidic pH depends on lipid assimilation and is accompanied by reduced GAPDH activity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	31
58	Metabolomics of Central Carbon Metabolism in <i>Mycobacterium tuberculosis</i> . Microbiology Spectrum, 2014, 2, .	1.2	29
59	Evolution of a thienopyrimidine antitubercular relying on medicinal chemistry and metabolomics insights. Tetrahedron Letters, 2015, 56, 3246-3250.	0.7	27
60	Multiform antimicrobial resistance from a metabolic mutation. Science Advances, 2021, 7, .	4.7	25
61	Suitability of silica hydride stationary phase, aqueous normal phase chromatography for untargeted metabolomic profiling of <i>Enterococcus faecium</i> and <i>Staphylococcus aureus</i> . Journal of Separation Science, 2009, 32, 2262-2265.	1.3	24
62	Targeting protein biotinylation enhances tuberculosis chemotherapy. Science Translational Medicine, 2018, 10, .	5.8	24
63	Impact of CodY protein on metabolism, sporulation and virulence in Clostridioides difficile ribotype 027. PLoS ONE, 2019, 14, e0206896.	1.1	24
64	Depletion of the DarG antitoxin in <i>Mycobacterium tuberculosis</i> triggers the DNAâ€damage response and leads to cell death. Molecular Microbiology, 2020, 114, 641-652.	1.2	24
65	Emerging Approaches to Tuberculosis Drug Development: At Home in the Metabolome. Trends in Pharmacological Sciences, 2017, 38, 393-405.	4.0	22
66	Two for the price of one: Attacking the energetic-metabolic hub of mycobacteria to produce new chemotherapeutic agents. Progress in Biophysics and Molecular Biology, 2020, 152, 35-44.	1.4	22
67	CinA mediates multidrug tolerance in Mycobacterium tuberculosis. Nature Communications, 2022, 13, 2203.	5.8	22
68	An amiloride derivative is active against the F1Fo-ATP synthase and cytochrome bd oxidase of Mycobacterium tuberculosis. Communications Biology, 2022, 5, 166.	2.0	21
69	Prevalence, persistence, and microbiology of Staphylococcus aureus nasal carriage among hemodialysis outpatients at a major New York Hospital. Diagnostic Microbiology and Infectious Disease, 2011, 70, 37-44.	0.8	20
70	Metabolism and the Evolution of Social Behavior. Molecular Biology and Evolution, 2017, 34, 2367-2379.	3.5	20
71	Chemical–genetic interaction mapping links carbon metabolism and cell wall structure to tuberculosis drug efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2201632119.	3.3	20
72	Minding the gaps: metabolomics mends functional genomics. EMBO Reports, 2013, 14, 949-950.	2.0	19

Куи Y Rhee

#	Article	IF	CITATIONS
73	Identification of a Mycothiol-Dependent Nitroreductase from <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2018, 4, 771-787.	1.8	19
74	Intermediate-Type Vancomycin Resistance (VISA) in Genetically-Distinct Staphylococcus aureus Isolates Is Linked to Specific, Reversible Metabolic Alterations. PLoS ONE, 2014, 9, e97137.	1.1	18
75	Endemic Acinetobacter baumannii in a New York Hospital. PLoS ONE, 2011, 6, e28566.	1.1	17
76	Transcriptional regulator-induced phenotype screen reveals drug potentiators in Mycobacterium tuberculosis. Nature Microbiology, 2021, 6, 44-50.	5.9	15
77	Metabolic Perspectives on Persistence. Microbiology Spectrum, 2017, 5, .	1.2	14
78	Metabolomics of Mycobacterium tuberculosis. Methods in Molecular Biology, 2021, 2314, 579-593.	0.4	12
79	GLUT5 (SLC2A5) enables fructose-mediated proliferation independent of ketohexokinase. Cancer & Metabolism, 2021, 9, 12.	2.4	12
80	Bacillus subtilis PgcA moonlights as a phosphoglucosamine mutase in support of peptidoglycan synthesis. PLoS Genetics, 2019, 15, e1008434.	1.5	11
81	Multiple acyl-CoA dehydrogenase deficiency kills Mycobacterium tuberculosis in vitro and during infection. Nature Communications, 2021, 12, 6593.	5.8	11
82	Control of biotin biosynthesis in mycobacteria by a pyruvate carboxylase dependent metabolic signal. Molecular Microbiology, 2017, 106, 1018-1031.	1.2	10
83	Deciphering functional redundancy and energetics of malate oxidation in mycobacteria. Journal of Biological Chemistry, 2022, 298, 101859.	1.6	10
84	Two Interacting ATPases Protect Mycobacterium tuberculosis from Glycerol and Nitric Oxide Toxicity. Journal of Bacteriology, 2020, 202, .	1.0	8
85	Inhibiting Mycobacterium tuberculosis CoaBC by targeting an allosteric site. Nature Communications, 2021, 12, 143.	5.8	8
86	Activity-based annotation: the emergence of systems biochemistry. Trends in Biochemical Sciences, 2022, 47, 785-794.	3.7	8
87	Comparison of transposon and deletion mutants in Mycobacterium tuberculosis : The case of rv1248c , encoding 2-hydroxy-3-oxoadipate synthase. Tuberculosis, 2015, 95, 689-694.	0.8	7
88	Allostery and compartmentalization: old but not forgotten. Current Opinion in Microbiology, 2014, 18, 23-29.	2.3	5
89	Urinary biomarkers of mycobacterial load and treatment response in pulmonary tuberculosis. JCI Insight, 2020, 5, .	2.3	5
90	Microbial Metabolomics: Fifty Shades of Metabolism. ACS Infectious Diseases, 2015, 1, 73-75.	1.8	4

Куи Y Rhee

#	Article	IF	CITATIONS
91	Innovations in MD-only physician-scientist training: experiences from the Burroughs Wellcome Fund physician-scientist institutional award initiative. Journal of Clinical Investigation, 2021, 131, .	3.9	4
92	Metabolic bifunctionality of Rv0812 couples folate and peptidoglycan biosynthesis in <i>Mycobacterium tuberculosis</i> . Journal of Experimental Medicine, 2021, 218, .	4.2	4
93	Targeting <i>Mycobacterium tuberculosis</i> CoaBC through Chemical Inhibition of 4′-Phosphopantothenoyl- <scp>l</scp> -cysteine Synthetase (CoaB) Activity. ACS Infectious Diseases, 2021, 7, 1666-1679.	1.8	3
94	Metabolic Perspectives on Persistence. , 2017, , 653-669.		2
95	A Tandem Liquid Chromatography–Mass Spectrometry-based Approach for Metabolite Analysis of Staphylococcus aureus . Journal of Visualized Experiments, 2017, , .	0.2	1
96	1886. N1,N12-Diacetylspermine as Potential Urinary Biomarker to Monitor Treatment Response and Bacterial Load in Pulmonary Tuberculosis. Open Forum Infectious Diseases, 2019, 6, S53-S53.	0.4	1
97	A d-Phenylalanine-Benzoxazole Derivative Reveals the Role of the Essential Enzyme Rv3603c in the Pantothenate Biosynthetic Pathway of Mycobacterium tuberculosis. ACS Infectious Diseases, 2022, 8, 330-342.	1.8	1
98	Metabolomics of Central Carbon Metabolism in <i>Mycobacterium tuberculosis</i> ., 0, , 323-339.		0
99	Title is missing!. , 2020, 16, e1008884.		0
100	Title is missing!. , 2020, 16, e1008884.		0
101	Title is missing!. , 2020, 16, e1008884.		0
102	Title is missing!. , 2020, 16, e1008884.		0