
Kyoung-Ku Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9375099/publications.pdf Version: 2024-02-01

KYOUNG-KU KANC

#	Article	IF	CITATIONS
1	EDTA-functionalized KCC-1 and KIT-6 mesoporous silicas for Nd3+ ion recovery from aqueous solutions. Journal of Industrial and Engineering Chemistry, 2018, 67, 210-218.	5.8	143
2	Microwave preparation of a titanium-substituted mesoporous molecular sieve. Catalysis Letters, 1999, 59, 45-49.	2.6	64
3	Electrorheological properties of a suspension of a mesoporous molecular sieve (MCM-41). Microporous and Mesoporous Materials, 2000, 39, 19-24.	4.4	63
4	lonic liquid entrapped UiO-66: Efficient adsorbent for Gd3+ capture from water. Chemical Engineering Journal, 2019, 370, 792-799.	12.7	60
5	Microfluidic preparation of monodisperse polymeric microspheres coated with silica nanoparticles. Scientific Reports, 2018, 8, 8525.	3.3	42
6	Aqueous adsorption of bisphenol A over a porphyrinic porous organic polymer. Chemosphere, 2021, 265, 129161.	8.2	39
7	Physiochemical properties of transition metal-grafted MCM-48 prepared using matallocene precursors. Journal of Molecular Catalysis A, 2000, 159, 403-410.	4.8	36
8	Synthesis of TS-1 by microwave heating of template-impregnated SiO2–TiO2 xerogels. Catalysis Letters, 2001, 72, 229-232.	2.6	24
9	Analysis of small molecules by desorption/ionization on mesoporous silicate (DIOM)-mass spectrometry (MS). Microporous and Mesoporous Materials, 2007, 98, 200-207.	4.4	21
10	Synthesis and characterization of novel mesoporous silica with large wormhole-like pores: Use of TBOS as silicon source. Microporous and Mesoporous Materials, 2005, 84, 34-40.	4.4	19
11	Aqueous Nd3+ capture using a carboxyl-functionalized porous carbon derived from ZIF-8. Journal of Colloid and Interface Science, 2021, 594, 702-712.	9.4	18
12	Synthesis of MFI-type zeolites under atmospheric pressure. Korean Journal of Chemical Engineering, 2001, 18, 113-119.	2.7	17
13	Microfluidic approaches for the design of functional materials. Microelectronic Engineering, 2018, 199, 1-15.	2.4	17
14	Recent progress in the synthesis of inorganic particulate materials using microfluidics. Journal of the Taiwan Institute of Chemical Engineers, 2019, 98, 2-19.	5.3	17
15	Graphene-based mesoporous nanocomposites of spherical shape with a 2-D layered structure. Journal of Materials Chemistry A, 2013, 1, 6719.	10.3	14
16	Preparation of chemically uniform and monodisperse microparticles as highly efficient solid acid catalysts for aldol condensation. Chemical Engineering Science, 2018, 175, 168-174.	3.8	13
17	Homogeneous and biphasic autoxidation of tetralin catalyzed by transition metal salts and complexes. Journal of Molecular Catalysis A, 1999, 137, 23-29.	4.8	12
18	Laser desorption/ionization—Mass spectrometry using mesoporous silicate as matrix for the analysis of various molecules. Biotechnology and Bioprocess Engineering, 2007, 12, 174-179.	2.6	12

KYOUNG-KU KANG

#	Article	IF	CITATIONS
19	Synthesis of silica nanoparticles using biomimetic mineralization with polyallylamine hydrochloride. Journal of Colloid and Interface Science, 2017, 507, 145-153.	9.4	12
20	Directed Assembly of Janus Cylinders by Controlling the Solvent Polarity. Langmuir, 2017, 33, 7503-7511.	3.5	11
21	Synthesis and characterization of hexagonal mesoporous materials using hydrothermal restructuring method. Studies in Surface Science and Catalysis, 2002, , 101-108.	1.5	9
22	Synthesis and characterization of hierarchical titanium-containing mesoporous materials with MFI crystalline structure using the gas phase recrystallization for the improvement of olefins epoxidation activity. Microporous and Mesoporous Materials, 2018, 257, 202-211.	4.4	6
23	Immobilization of physicochemically stable Pd nanocatalysts inside uniform hydrogel microparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 593, 124607.	4.7	6
24	Transformation of hexagonal mesoporous materials into zeolytically ordered structure: Dry gel transformation. Studies in Surface Science and Catalysis, 2004, 154, 497-505.	1.5	5
25	Title is missing!. Catalysis Letters, 2003, 86, 145-149.	2.6	3
26	Heterogenization of AlCl3 on mesoporous molecular sieves and its catalytic activity. Studies in Surface Science and Catalysis, 2003, 146, 673-676.	1.5	3
27	Elegant Approach to the Controllability of the Mechanical Properties of a Microgel via the Self-Assembly of Internal Molecules. ACS Central Science, 2018, 4, 434-436.	11.3	3
28	Improvement of a diffusion-based microfluidic chemotaxis assay through stable formation of a chemical gradient. Chemical Engineering Science, 2019, 202, 130-137.	3.8	3
29	Synthesis, characterization and catalytic activity of titanium containing mesoporous materials with TS-1 wall structure. Studies in Surface Science and Catalysis, 2006, 159, 789-792.	1.5	1
30	Nanoliter scale microloop reactor with rapid mixing ability for biochemical reaction. Korean Journal of Chemical Engineering, 2018, 35, 2036-2042.	2.7	1