List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9375073/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiscale characterization of pathological bone tissue. Microscopy Research and Technique, 2022, 85, 469-486.	1.2	5
2	Collagen mineralization with lepidocrocite <i>via</i> Fe(OH) ₂ addition. CrystEngComm, 2022, 24, 1211-1217.	1.3	2
3	Lipid Oxidation in Food Emulsions: Analytical Challenges and Recent Developments. , 2022, , 3-29.		2
4	Characterization of hen phosvitin in aqueous salt solutions: Size, structure, and aggregation. Food Hydrocolloids, 2022, 129, 107545.	5.6	6
5	In Situ Fabrication, Manipulation, and Mechanical Characterization of Free tanding Silica Thin Films Using Focused Ion Beam Scanning Electron Microscopy. Advanced Materials Interfaces, 2022, 9, .	1.9	2
6	Investigating the Morphology and Mechanics of Biogenic Hierarchical Materials at and below Micrometer Scale. Nanomaterials, 2022, 12, 1549.	1.9	0
7	Assembly of partially covered strawberry supracolloids in dilute and concentrate aqueous dispersions. Journal of Colloid and Interface Science, 2022, 627, 827-837.	5.0	2
8	Time-resolved investigation of mesoporous silica microsphere formation using in situ heating optical microscopy. Journal of Colloid and Interface Science, 2021, 585, 118-125.	5.0	2
9	Spontaneous organization of supracolloids into three-dimensional structured materials. Nature Materials, 2021, 20, 541-547.	13.3	19
10	Controlled titration-based ZnO formation. CrystEngComm, 2021, 23, 3340-3348.	1.3	5
11	Building Reversible Nanoraspberries. Nano Letters, 2021, 21, 2232-2239.	4.5	4
12	Nanoscale chemical analysis of beamâ€sensitive polymeric materials by cryogenic electron microscopy. Journal of Polymer Science, 2021, 59, 1221-1231.	2.0	4
13	A modular approach toward producing nanotherapeutics targeting the innate immune system. Science Advances, 2021, 7, .	4.7	20
14	Correlative imaging for polymer science. Journal of Polymer Science, 2021, 59, 1232-1240.	2.0	3
15	Photoactivated nanomotors via aggregation induced emission for enhanced phototherapy. Nature Communications, 2021, 12, 2077.	5.8	97
16	Mapping and Controlling Liquid Layer Thickness in Liquidâ€Phase (Scanning) Transmission Electron Microscopy. Small Methods, 2021, 5, e2001287.	4.6	21
17	Studying Reaction Mechanisms in Solution Using a Distributed Electron Microscopy Method. ACS Nano, 2021, 15, 10296-10308.	7.3	13

#	Article	IF	CITATIONS
19	Biodegradable Elastic Sponge from Nanofibrous Biphasic Calcium Phosphate Ceramic as an Advanced Material for Regenerative Medicine. Advanced Functional Materials, 2021, 31, 2102911.	7.8	15
20	"No-dose―imaging. Microscopy and Microanalysis, 2021, 27, 2620-2622.	0.2	1
21	The effects of washing a collagen sample prior to TEM examination. Microscopy Research and Technique, 2021, , .	1.2	3
22	Crystallization via Oriented Attachment of Nanoclusters with Short-Range Order in Solution. Journal of Physical Chemistry C, 2021, 125, 1143-1149.	1.5	4
23	In Situ Manipulation and Micromechanical Characterization of Diatom Frustule Constituents Using Focused Ion Beam Scanning Electron Microscopy. Small Methods, 2021, 5, e2100638.	4.6	5
24	Chain length of bioinspired polyamines affects size and condensation of monodisperse silica particles. Communications Chemistry, 2021, 4, .	2.0	5
25	Low-dose (S)TEM elemental analysis of water and oxygen uptake in beam sensitive materials. Ultramicroscopy, 2020, 208, 112855.	0.8	9
26	Crystallization by particle attachment is a colloidal assembly process. Nature Materials, 2020, 19, 391-396.	13.3	78
27	Nanohybrid Materials with Tunable Birefringence via Cation Exchange in Polymer Films. Advanced Functional Materials, 2020, 30, 1907456.	7.8	9
28	Intermolecular channels direct crystal orientation in mineralized collagen. Nature Communications, 2020, 11, 5068.	5.8	90
29	Hierarchical micro-/mesoporous zeolite microspheres prepared by colloidal assembly of zeolite nanoparticles. RSC Advances, 2020, 10, 36459-36466.	1.7	4
30	Comment: Non-classical nucleation towards separation and recycling science: Iron and aluminium (Oxy)(hydr)oxides. Current Opinion in Colloid and Interface Science, 2020, 46, 128-129.	3.4	0
31	ModifyingÂthe thickness, pore size, and composition of diatom frustule in Craspedostauros sp. with Al3+ ions. Scientific Reports, 2020, 10, 19498.	1.6	15
32	Trained Immunity-Promoting Nanobiologic Therapy Suppresses Tumor Growth and Potentiates Checkpoint Inhibition. Cell, 2020, 183, 786-801.e19.	13.5	101
33	Counter-ion influence on the mechanism of HMTA-mediated ZnO formation. CrystEngComm, 2020, 22, 5854-5861.	1.3	10
34	Supramolecular Double Helices from Small C ₃ -Symmetrical Molecules Aggregated in Water. Journal of the American Chemical Society, 2020, 142, 17644-17652.	6.6	30
35	Liquidâ€Phase Electron Microscopy for Soft Matter Science and Biology. Advanced Materials, 2020, 32, e2001582.	11.1	75
36	Hybrid Biodegradable Nanomotors through Compartmentalized Synthesis. Nano Letters, 2020, 20, 4472-4480.	4.5	56

3

#	Article	IF	CITATIONS
37	Multiscale Colloidal Assembly of Silica Nanoparticles into Microspheres with Tunable Mesopores. Advanced Functional Materials, 2020, 30, 2002725.	7.8	26
38	Liquid phase transmission electron microscopy with flow and temperature control. Journal of Materials Chemistry C, 2020, 8, 10781-10790.	2.7	35
39	Local quantification of mesoporous silica microspheres using multiscale electron tomography and lattice Boltzmann simulations. Microporous and Mesoporous Materials, 2020, 302, 110243.	2.2	3
40	Dynamics of silver particles during ethylene epoxidation. Applied Catalysis B: Environmental, 2020, 272, 118983.	10.8	21
41	Designing stable, hierarchical peptide fibers from block co-polypeptide sequences. Chemical Science, 2019, 10, 9001-9008.	3.7	8
42	Understanding the Formation Mechanism of Magnetic Mesocrystals with (Cryo-)Electron Microscopy. Chemistry of Materials, 2019, 31, 7320-7328.	3.2	22
43	A Robust Au/ZnCr ₂ O ₄ Catalyst with Highly Dispersed Gold Nanoparticles for Gas-Phase Selective Oxidation of Cyclohexanol to Cyclohexanone. ACS Catalysis, 2019, 9, 11104-11115.	5.5	20
44	Structure Sensitivity of Silver-Catalyzed Ethylene Epoxidation. ACS Catalysis, 2019, 9, 9829-9839.	5.5	34
45	Growth Kinetics of Cobalt Carbonate Nanoparticles Revealed by Liquid-Phase Scanning Transmission Electron Microscopy. Journal of Physical Chemistry C, 2019, 123, 25448-25455.	1.5	13
46	Cryo-TEM and electron tomography reveal leaching-induced pore formation in ZSM-5 zeolite. Journal of Materials Chemistry A, 2019, 7, 1442-1446.	5.2	19
47	A Unified View on Nanoscale Packing, Connectivity, and Conductivity of CNT Networks. Advanced Functional Materials, 2019, 29, 1807901.	7.8	13
48	Unraveling the Role of Lithium in Enhancing the Hydrogen Evolution Activity of MoS ₂ : Intercalation versus Adsorption. ACS Energy Letters, 2019, 4, 1733-1740.	8.8	45
49	Tunable colloidal Ni nanoparticles confined and redistributed in mesoporous silica for CO ₂ methanation. Catalysis Science and Technology, 2019, 9, 2578-2591.	2.1	31
50	Formation of Hierarchical Hybrid Silica-Polymer Using Quantitative Cryo- Electron Tomography. Microscopy and Microanalysis, 2019, 25, 59-60.	0.2	1
51	Towards Understanding the Mechanisms behind Templated Growth of 2D Magnetite Platelets via Bio-Inspired Approaches. Microscopy and Microanalysis, 2019, 25, 61-62.	0.2	0
52	<i>In-Situ</i> Liquid Phase Electron Microscopy of Beam-Sensitive Materials. Microscopy and Microanalysis, 2019, 25, 63-64.	0.2	1
53	Liquid–liquid phase separation during amphiphilic self-assembly. Nature Chemistry, 2019, 11, 320-328.	6.6	185
54	Enhancing the electrocatalytic activity of 2H-WS ₂ for hydrogen evolution <i>via</i> defect engineering. Physical Chemistry Chemical Physics, 2019, 21, 6071-6079.	1.3	60

#	Article	IF	CITATIONS
55	Photocatalytic activity of exfoliated graphite–TiO ₂ nanoparticle composites. Nanoscale, 2019, 11, 19301-19314.	2.8	18
56	Molecular nucleation mechanisms and control strategies for crystal polymorph selection. Nature, 2018, 556, 89-94.	13.7	150
57	Proteins as supramolecular hosts for C ₆₀ : a true solution of C ₆₀ in water. Nanoscale, 2018, 10, 9908-9916.	2.8	33
58	Quantitative ET in Materials Chemistry. Microscopy and Microanalysis, 2018, 24, 1442-1443.	0.2	0
59	Reversible Restructuring of Silver Particles during Ethylene Epoxidation. ACS Catalysis, 2018, 8, 11794-11800.	5.5	42
60	Tunable Stimuliâ€Responsive Colorâ€Change Properties of Layered Organic Composites. Advanced Functional Materials, 2018, 28, 1804906.	7.8	48
61	Quantification and optimization of ADF-STEM image contrast for beam-sensitive materials. Royal Society Open Science, 2018, 5, 171838.	1.1	14
62	Microscopic structure of the polymer-induced liquid precursor for calcium carbonate. Nature Communications, 2018, 9, 2582.	5.8	100
63	Native Chemical Ligation for Cross-Linking of Flower-Like Micelles. Biomacromolecules, 2018, 19, 3766-3775.	2.6	26
64	Liquid Phase Electron Microscopy of Soft Matter. Microscopy and Microanalysis, 2018, 24, 248-249.	0.2	1
65	3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling. Applied Materials Today, 2017, 9, 21-28.	2.3	433
66	Quantitative Analysis of Electron Beam Damage in Organic Thin Films. Journal of Physical Chemistry C, 2017, 121, 10552-10561.	1.5	65
67	Graphene-Flakes Printed Wideband Elliptical Dipole Antenna for Low-Cost Wireless Communications Applications. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 1883-1886.	2.4	55
68	A classical view on nonclassical nucleation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7882-E7890.	3.3	181
69	CryoTEM as an Advanced Analytical Tool for Materials Chemists. Accounts of Chemical Research, 2017, 50, 1495-1501.	7.6	82
70	The Influence and Removability of Colloidal Capping Agents on Carbon Monoxide Hydrogenation by Zirconia‣upported Rhodium Nanoparticles. ChemCatChem, 2017, 9, 1018-1024.	1.8	7
71	Conductive Screen Printing Inks by Gelation of Graphene Dispersions. Advanced Functional Materials, 2016, 26, 586-593.	7.8	139
72	Conductivity Enhancement of Binderâ€Based Graphene Inks by Photonic Annealing and Subsequent Compression Rolling. Advanced Engineering Materials, 2016, 18, 1234-1239.	1.6	40

#	Article	IF	CITATIONS
73	Establishing hierarchy: the chain of events leading to the formation of silicalite-1 nanosheets. Chemical Science, 2016, 7, 6506-6513.	3.7	21
74	The evolution of bicontinuous polymeric nanospheres in aqueous solution. Soft Matter, 2016, 12, 4113-4122.	1.2	19
75	Mesoporous Silica Nanoparticles with Large Pores for the Encapsulation and Release of Proteins. ACS Applied Materials & Interfaces, 2016, 8, 32211-32219.	4.0	111
76	Quantitative Analysis of Connectivity and Conductivity in Mesoscale Multiwalled Carbon Nanotube Networks in Polymer Composites. Journal of Physical Chemistry C, 2016, 120, 27618-27627.	1.5	19
77	Graphene screenâ€printed radioâ€frequency identification devices on flexible substrates. Physica Status Solidi - Rapid Research Letters, 2016, 10, 812-818.	1.2	44
78	A chaotic self-oscillating sunlight-driven polymer actuator. Nature Communications, 2016, 7, 11975.	5.8	329
79	Advanced tomography techniques for inorganic, organic, and biological materials. MRS Bulletin, 2016, 41, 516-521.	1.7	15
80	Quantitative nanoscopy: Tackling sampling limitations in (S)TEM imaging of polymers and composites. Ultramicroscopy, 2016, 160, 130-139.	0.8	15
81	A simple and flexible route to large-area conductive transparent graphene thin-films. Synthetic Metals, 2015, 201, 67-75.	2.1	14
82	Visualizing order in dispersions and solid state morphology with Cryo-TEM and electron tomography: P3HT : PCBM organic solar cells. Journal of Materials Chemistry A, 2015, 3, 5031-5040.	5.2	23
83	Graphene oxide single sheets as substrates for high resolution cryoTEM. Soft Matter, 2015, 11, 1265-1270.	1.2	26
84	Writing Silica Structures in Liquid with Scanning Transmission Electron Microscopy. Small, 2015, 11, 585-590.	5.2	31
85	Controlling Internal Pore Sizes in Bicontinuous Polymeric Nanospheres. Angewandte Chemie - International Edition, 2015, 54, 2457-2461.	7.2	56
86	Partial Oxidation as a Rational Approach to Kinetic Control in Bioinspired Magnetite Synthesis. Chemistry - A European Journal, 2015, 21, 6150-6156.	1.7	21
87	Bimodal Latex Effect on Spin-Coated Thin Conductive Polymer–Single-Walled Carbon Nanotube Layers. Langmuir, 2015, 31, 11982-11988.	1.6	11
88	Controlling Internal Pore Sizes in Bicontinuous Polymeric Nanospheres. Angewandte Chemie, 2015, 127, 2487-2491.	1.6	13
89	On Packing, Connectivity, and Conductivity in Mesoscale Networks of Polydisperse Multiwalled Carbon Nanotubes. Journal of Physical Chemistry C, 2014, 118, 29796-29803.	1.5	19
90	The properties of SIRT, TVM, and DART for 3D imaging of tubular domains in nanocomposite thin-films and sections. Ultramicroscopy, 2014, 147, 137-148.	0.8	45

#	Article	IF	CITATIONS
91	Coiled coil driven membrane fusion between cyclodextrin vesicles and liposomes. Soft Matter, 2014, 10, 9746-9751.	1.2	16
92	Pt-Re synergy in aqueous-phase reforming of glycerol and the water–gas shift reaction. Journal of Catalysis, 2014, 311, 88-101.	3.1	103
93	Nucleation and Growth of Monodisperse Silica Nanoparticles. Nano Letters, 2014, 14, 1433-1438.	4.5	165
94	Three-Dimensional Structure of P3HT Assemblies in Organic Solvents Revealed by Cryo-TEM. Nano Letters, 2014, 14, 2033-2038.	4.5	74
95	Inkjet printing of graphene. Faraday Discussions, 2014, 173, 323-336.	1.6	70
96	On Resolution in Electron Tomography of Beam Sensitive Materials. Journal of Physical Chemistry C, 2014, 118, 1248-1257.	1.5	11
97	3D Nanoscale Analysis of Zeolite Catalysts by Electron Tomography and Image Processing. Microscopy and Microanalysis, 2014, 20, 784-785.	0.2	2
98	Electron Microscopy Techniques. , 2014, , 191-221.		2
99	Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nature Communications, 2013, 4, 1507.	5.8	602
100	Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nature Materials, 2013, 12, 34-39.	13.3	606
101	Heterogeneities of the Nanostructure of Platinum/Zeolite Y Catalysts Revealed by Electron Tomography. ACS Nano, 2013, 7, 3698-3705.	7.3	85
102	Controlling the Distribution of Supported Nanoparticles by Aqueous Synthesis. Chemistry of Materials, 2013, 25, 890-896.	3.2	44
103	Bicontinuous Nanospheres from Simple Amorphous Amphiphilic Diblock Copolymers. Macromolecules, 2013, 46, 9845-9848.	2.2	36
104	Shearâ€Induced Orientation of Gyroid PSâ€ <i>b</i> â€P4VP(PDP) Supramolecules. Macromolecular Rapid Communications, 2013, 34, 1208-1212.	2.0	10
105	Gross morphological changes in thylakoid membrane structure are associated with photosystem I deletion in Synechocystis sp. PCC 6803. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1427-1434.	1.4	30
106	H2PtCl6-derived Pt nanoparticles on USY zeolite: A qualitative and quantitative electron tomography study. Microporous and Mesoporous Materials, 2012, 164, 99-103.	2.2	11
107	Peptide nanotube formation: a crystal growth process. Soft Matter, 2012, 8, 7463.	1.2	36
108	Mesoporosity of Zeoliteâ€Y: Quantitative Threeâ€Dimensional Study by Image Analysis of Electron Tomograms. Angewandte Chemie - International Edition, 2012, 51, 4213-4217.	7.2	103

#	Article	IF	CITATIONS
109	Biomimetic Mineralization of Calcium Phosphate on a Functionalized Porous Silicon Carbide Biomaterial. ChemPlusChem, 2012, 77, 694-699.	1.3	6
110	A Quantitative Electron Tomography Study of Ruthenium Particles on the Interior and Exterior Surfaces of Carbon Nanotubes. ChemSusChem, 2011, 4, 957-963.	3.6	28
111	Design of supported cobalt catalysts with maximum activity for the Fischer–Tropsch synthesis. Journal of Catalysis, 2010, 270, 146-152.	3.1	170
112	Imaging of Selfâ€Assembled Structures: Interpretation of TEM and Cryoâ€TEM Images. Angewandte Chemie - International Edition, 2010, 49, 7850-7858.	7.2	202
113	Zeoliteâ€Y Crystals with Trimodal Porosity as Ideal Hydrocracking Catalysts. Angewandte Chemie - International Edition, 2010, 49, 10074-10078.	7.2	265
114	Towards automated electron holographic tomography for 3D mapping of electrostatic potentials. Ultramicroscopy, 2010, 110, 390-399.	0.8	57
115	2-Point correlation function of nanostructured materials via the grey-tone correlation function of electron tomograms: A three-dimensional structural analysis of ordered mesoporous silica. Acta Materialia, 2010, 58, 770-780.	3.8	19
116	The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nature Materials, 2010, 9, 1004-1009.	13.3	960
117	Mesoporous mordenites obtained by sequential acid and alkaline treatments – Catalysts for cumene production with enhanced accessibility. Journal of Catalysis, 2010, 276, 170-180.	3.1	90
118	Observation of a Ternary Nanocrystal Superlattice and Its Structural Characterization by Electron Tomography. Angewandte Chemie - International Edition, 2009, 48, 9655-9657.	7.2	95
119	Electron Tomography for Heterogeneous Catalysts and Related Nanostructured Materials. Chemical Reviews, 2009, 109, 1613-1629.	23.0	235
120	Periodic Mesoporous Organosilicas Consisting of 3D Hexagonally Ordered Interconnected Globular Pores. Journal of Physical Chemistry C, 2009, 113, 5556-5562.	1.5	34
121	Quantitative Characterization of Pore Corrugation in Ordered Mesoporous Materials Using Image Analysis of Electron Tomograms. Chemistry of Materials, 2009, 21, 1311-1317.	3.2	85
122	Quantitative Structural Analysis of Binary Nanocrystal Superlattices by Electron Tomography. Nano Letters, 2009, 9, 2719-2724.	4.5	90
123	Isomeric periodic mesoporous organosilicas with controllable properties. Journal of Materials Chemistry, 2009, 19, 8839.	6.7	18
124	Binary Nanoparticle Superlattices in 3D: from Quantitative Analysis of Crystal Structures to Characterization of Lattice Defects Microscopy and Microanalysis, 2009, 15, 1192-1193.	0.2	0
125	Volume and surface-area measurements using tomography, with an example from the Brenham pallasite meteorite. Computers and Geosciences, 2008, 34, 1-7.	2.0	9
126	Understanding the effect of postsynthesis ammonium treatment on the catalytic activity of Au/Ti-SBA-15 catalysts for the oxidation of propene. Journal of Catalysis, 2008, 259, 43-53.	3.1	28

#	Article	IF	CITATIONS
127	How nitric oxide affects the decomposition of supported nickel nitrate to arrive at highly dispersed catalysts. Journal of Catalysis, 2008, 260, 227-235.	3.1	103
128	Measuring Location, Size, Distribution, and Loading of NiO Crystallites in Individual SBA-15 Pores by Electron Tomography. Journal of the American Chemical Society, 2007, 129, 10249-10254.	6.6	94
129	Fractal parameters of individual soot particles determined using electron tomography: Implications for optical properties. Journal of Geophysical Research, 2007, 112, .	3.3	126
130	Polyhedral serpentine grains in CM chondrites. Meteoritics and Planetary Science, 2006, 41, 681-688.	0.7	36
131	High-Resolution Electron Tomography Study of an Industrial Niâ Mo/γ-Al2O3Hydrotreating Catalyst. Journal of Physical Chemistry B, 2006, 110, 10209-10212.	1.2	49
132	Comparison of intensity distributions in tomograms from BF TEM, ADF STEM, HAADF STEM, and calculated tilt series. Ultramicroscopy, 2005, 106, 18-27.	0.8	66
133	Electron tomography of nanoparticle clusters: Implications for atmospheric lifetimes and radiative forcing of soot. Geophysical Research Letters, 2005, 32, .	1.5	94
134	Electron Holographic Tomography - Challenge and Opportunity. Microscopy and Microanalysis, 2004, 10, 1174-1175.	0.2	6
135	Electron Holography of Nanomter-sized Magnetite Crystals. Microscopy and Microanalysis, 2003, 9, 174-175.	0.2	2

136 Mapping of oxygen and water related degradation across P3HT:PCBM interfaces. , 0, , .