Devendranath Ramkumar K

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9375012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Nb-free consumables on the microstructure and structural integrity of pressure vessel grades of dissimilar austenitic stainless steel welded joints. Journal of Materials Research and Technology, 2022, 18, 3443-3456.	5.8	2
2	Effect of weld microstructure on the tensile properties and impact toughness of the naval, marine-grade steel weld joints. Journal of Materials Research and Technology, 2022, 19, 3724-3737.	5.8	5
3	Microstructural evolution and elemental variation across the fusion interface of AISI 904L and Inconel 625 dissimilar weldments. Materials Today: Proceedings, 2021, 46, 8260-8265.	1.8	4
4	Effect of grain boundary precipitation on the mechanical integrity of EBW joints of Inconel 625. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 808, 140926.	5.6	16
5	Studies on Super Duplex Stainless Steel Manufactured by Wire Arc Additive Manufacturing. Transactions of the Indian Institute of Metals, 2021, 74, 1673.	1.5	20
6	Microstructural and Mechanical Characteristics of Cold Metal Transfer Weld Joints of UNS S32750. Journal of Materials Engineering and Performance, 2021, 30, 8095-8107.	2.5	2
7	Characterization of tensile strength and impact toughness of autogenous PCGTA weldments of aeronautical steel and austenitic stainless steel. Metallic Materials, 2021, 54, 279-288.	0.3	1
8	Microstructure and mechanical integrity relationship of PDC weld joints involving dissimilar marine grade alloys. Journal of Manufacturing Processes, 2020, 50, 111-122.	5.9	4
9	Microstructure characterization and tensile properties of CMT-based wire plus arc additive manufactured ER2594. Materials Characterization, 2020, 169, 110671.	4.4	35
10	Investigating the microbial-influenced corrosion of UNS S32750 stainless-steel base alloy and weld seams by biofilm-forming marine bacterium Macrococcus equipercicus. Bioelectrochemistry, 2020, 135, 107546.	4.6	15
11	Direct ageing response on the microstructure and mechanical properties of electron beam welds of Ni-Cr-Fe alloy used in vacuum insulated tubing. Journal of Manufacturing Processes, 2020, 54, 359-373.	5.9	6
12	Microstructure and properties of nano-SiO2 activated flux TIG (A-TIG) welding of Incoloy 925 joints. Journal of Manufacturing Processes, 2020, 58, 998-1018.	5.9	8
13	Effect of low energy laser shock peening on the mechanical integrity of Hastelloy C-276 welds. Journal of Materials Processing Technology, 2019, 274, 116296.	6.3	12
14	Effect of hot corrosion on the bimetallic joints employed in the coal-fired boiler. Materials Research Express, 2019, 6, 116511.	1.6	2
15	Microstructure Evolution, Structural Integrity, and Hot Corrosion Performance of Nitrogen-Enhanced Stainless Steel Welds. Journal of Materials Engineering and Performance, 2019, 28, 5806-5819.	2.5	4
16	Investigation on the fusion zone microstructures and mechanical integrity of AISI 904L and Inconel 625 weld joints. Materials Research Express, 2019, 6, 086540.	1.6	10
17	Microstructure and Mechanical Characterization of Incoloy 925 Welds in the As-Welded and Direct Aged Conditions. Journal of Materials Engineering and Performance, 2019, 28, 1563-1580.	2.5	12
18	Multi-pass arc welding techniques of 12â€ [−] mm thick super-duplex stainless steel. Journal of Materials Processing Technology, 2019, 271, 126-143.	6.3	40

#	Article	IF	CITATIONS
19	Structure-property evaluation of single pass Laser-arc hybrid welding of re-sulphurized martensitic stainless steel. Journal of Materials Processing Technology, 2019, 271, 413-419.	6.3	5
20	Microstructure and properties of inconel 718 and AISI 416 laser welded joints. Journal of Materials Processing Technology, 2019, 266, 52-62.	6.3	63
21	Failure evaluation of SA 210C riffle water wall tubes in 70†MW CFBC boiler. Engineering Failure Analysis, 2019, 95, 239-247.	4.0	16
22	Development of improved microstructural traits and mechanical integrity of stabilized stainless steel joints of AISI 321. Journal of Manufacturing Processes, 2018, 32, 582-594.	5.9	28
23	Investigations on the microstructure and mechanical properties of dissimilar welds of inconel 718 and sulphur rich martensitic stainless steel, AISI 416. Journal of Manufacturing Processes, 2018, 32, 685-698.	5.9	69
24	Environment-Induced Degradation in Maraging Steel Grade 18Ni1700. Minerals, Metals and Materials Series, 2018, , 521-528.	0.4	1
25	Environment-Induced Degradation in Maraging Steel Grade 18Ni1700. Materials Science Forum, 2018, 941, 407-412.	0.3	0
26	Effect of activated flux on penetration depth, microstructure and mechanical properties of Ti-6Al-4V TIG welds. Journal of Materials Processing Technology, 2018, 261, 233-241.	6.3	31
27	Experimental investigations on the SiO2 flux-assisted GTA welding of super-austenitic stainless steels. International Journal of Advanced Manufacturing Technology, 2017, 93, 129-140.	3.0	13
28	Investigations on the microstructure, tensile strength and high temperature corrosion behaviour of Inconel 625 and Inconel 718 dissimilar joints. Journal of Manufacturing Processes, 2017, 25, 306-322.	5.9	84
29	Hot-corrosion resistance of dissimilar AISI 4340 and AISI 304L weldments in the molten salt environment at 600°C. Corrosion Engineering Science and Technology, 2017, 52, 114-123.	1.4	23
30	Effect of Continuous and Pulsed Current GTA Welding on the Performance of Dissimilar Welds Involving Aerospace Grade Alloys. Transactions of the Indian Institute of Metals, 2017, 70, 729-739.	1.5	14
31	Effect of fillers on the microstructure, mechanical properties, and hot corrosion behavior of Nb stabilized austenitic stainless steel welds. Journal of Materials Research, 2017, 32, 582-598.	2.6	5
32	Investigations on the structure – property relationships of PCGTA welds involving Inconel 718 and AISI 430. Ciência & Tecnologia Dos Materiais, 2017, 29, 28-38.	0.5	7
33	Microstructure, mechanical properties and biocorrosion behavior of dissimilar welds of AISI 904L and UNS S32750. Journal of Manufacturing Processes, 2017, 30, 27-40.	5.9	27
34	Characterization of Microstructure, Tensile Strength and Corrosion Behavior of Autogenous GTA Welds of Inconel X750 With and Without Activated Compound Flux. Metallography, Microstructure, and Analysis, 2017, 6, 407-424.	1.0	5
35	Effect of filler metals on the mechanical properties of Inconel 625 and AISI 904L dissimilar weldments using gas tungsten arc welding. IOP Conference Series: Materials Science and Engineering, 2017, 263, 062072.	0.6	6
36	Effect of Mo-rich Fillers in Pulsed Current Gas Tungsten Arc Welding of Inconel 718 for Improved Strength and Hot Corrosion Resistance. Journal of Materials Engineering and Performance, 2017, 26, 5620-5640.	2.5	23

#	Article	IF	CITATIONS
37	Effect of pulse density and the number of shots on hardness and tensile strength of laser shock peened, activated flux TIG welds of AISI 347. Journal of Manufacturing Processes, 2017, 28, 295-308.	5.9	12
38	Microstructural evolution and precipitation behavior in heat affected zone of Inconel 625 and AISI 904L dissimilar welds. IOP Conference Series: Materials Science and Engineering, 2017, 263, 062073.	0.6	16
39	Effect of post weld heat treatment on the microstructure and tensile properties of activated flux TIG welds of Inconel X750. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 658, 326-338.	5.6	33
40	Effects of filler metals on the segregation, mechanical properties and hot corrosion behaviour of pulsed current gas tungsten arc welded super-austenitic stainless steel. Journal of Manufacturing Processes, 2016, 24, 46-61.	5.9	57
41	Influence of laser peening on the tensile strength and impact toughness of dissimilar welds of Inconel 625 and UNS S32205. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 676, 88-99.	5.6	37
42	Studies on the structure–property relationships and corrosion behaviour of the activated flux TIG welding of UNS S32750. Journal of Manufacturing Processes, 2016, 23, 231-241.	5.9	43
43	Development of pulsed current gas tungsten arc welding technique for dissimilar joints of marine grade alloys. Journal of Manufacturing Processes, 2016, 21, 201-213.	5.9	21
44	Studies on the weldability, microstructure and mechanical properties of flux assisted Nd:YAG laser welds of AISI 904L. Journal of Materials Research, 2015, 30, 2369-2379.	2.6	6
45	Studies on microstructure and mechanical properties of keyhole mode Nd:YAG laser welded Inconel 625 and duplex stainless steel, SAF 2205. Journal of Materials Research, 2015, 30, 3288-3298.	2.6	25
46	Effect of Continuous and Pulsed Current on the Metallurgical and Mechanical Properties of Gas Tungsten Arc Welded AISI 4340 Aeronautical and AISI 304 L Austenitic Stainless Steel Dissimilar Joints. Materials Research, 2015, 18, 59-77.	1.3	35
47	Metallurgical and mechanical characterization of dissimilar welds of austenitic stainless steel and super-duplex stainless steel – A comparative study. Journal of Manufacturing Processes, 2015, 19, 212-232.	5.9	72
48	Effect of Filler Metals on the Structure–Property Relationships of Continuous and Pulsed Current GTA Welds of AISI 430 and AISI 904L. Metallography, Microstructure, and Analysis, 2015, 4, 525-541.	1.0	13
49	Structure–property relationships of PCCTA welds of Inconel X750 in as-welded and post-weld heat treated conditions—A comparative study. Journal of Manufacturing Processes, 2015, 20, 1-14.	5.9	14
50	Investigations on the structure – Property relationships of electron beam welded Inconel 625 and UNS 32205. Materials & Design, 2015, 68, 158-166.	5.1	59
51	Effect of filler wires and direct ageing on the microstructure and mechanical properties in the multi-pass welding of Inconel 718. Journal of Manufacturing Processes, 2015, 18, 23-45.	5.9	52
52	Investigations on Structure–Property Relationships of Inconel 718 and AISI 430 Dissimilar Weldments. Metallography, Microstructure, and Analysis, 2015, 4, 305-321.	1.0	5
53	Effect of Filler Metals on the Weldability and Mechanical Properties of Multi-pass PCGTA Weldments of AISI 316L. Journal of Materials Engineering and Performance, 2015, 24, 1602-1613.	2.5	13
54	Studies on the weldability, microstructure and mechanical properties of activated flux TIG weldments of Inconel 718. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 639, 234-244.	5.6	56

#	Article	IF	CITATIONS
55	Characterization of metallurgical and mechanical properties on the multi-pass welding of Inconel 625 and AISI 316L. Journal of Mechanical Science and Technology, 2015, 29, 1039-1047.	1.5	51
56	Characterization of microstructure and mechanical properties of continuous and pulsed current gas tungsten arc welded superaustenitic stainless steel. Journal of Materials Research, 2015, 30, 1727-1746.	2.6	17
57	Investigations on structure–property relationships of activated flux TIG weldments of super-duplex/austenitic stainless steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 638, 60-68.	5.6	42
58	Effect of autogeneous GTA welding with and without flux addition on the microstructure and mechanical properties of AISI 904L joints. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 636, 1-9.	5.6	18
59	Comparative studies on the weldability, microstructure and tensile properties of autogeneous TIG welded AISI 430 ferritic stainless steel with and without flux. Journal of Manufacturing Processes, 2015, 20, 54-69.	5.9	51
60	Investigations on the microstructure and mechanical properties of multi-pass PCGTA welding of super-duplex stainless steel. Bulletin of Materials Science, 2015, 38, 837-846.	1.7	5
61	Effect of flux addition on the microstructure and tensile strength of dissimilar weldments involving Inconel 718 and AISI 416. Materials and Design, 2015, 87, 663-674.	7.0	32
62	Characterization of weld strength and toughness in the multi-pass welding of Inconel 625 and Super-duplex stainless steel UNS S32750. Ciência & Tecnologia Dos Materiais, 2015, 27, 41-52.	0.5	21
63	Influence of Filler Metals in the Control of Deleterious Phases During the Multi-pass Welding of Inconel 718 Plates. Acta Metallurgica Sinica (English Letters), 2015, 28, 196-207.	2.9	14
64	Effect of optimal weld parameters in the microstructure and mechanical properties of autogeneous gas tungsten arc weldments of super-duplex stainless steel UNS S32750. Materials & Design, 2015, 66, 356-365.	5.1	67
65	Hot corrosion behavior of monel 400 and AISI 304 dissimilar weldments exposed in the molten salt environment containing Na2SO4 + 60% V2O5 at 600 ŰC. Materials Research, 2014, 17, 1273-1284.	1.3	14
66	Optimization of the Pulsed Current Gas Tungsten Arc Welding Process Parameters for alloy C-276 using the Taguchi Method. Procedia Engineering, 2014, 97, 767-774.	1.2	13
67	Comparative Studies of High and Low Frequency Pulsing on the Aspect Ratio of Weld Bead in Gas Tungsten Arc Welded AISI 304L Plates. Procedia Engineering, 2014, 97, 871-880.	1.2	16
68	Characterization of microstructure and mechanical properties of Super Ni 718 alloy and AISI 316L dissimilar weldments. Journal of Materials Research, 2014, 29, 3011-3023.	2.6	20
69	Micro-segregation Studies on the Continuous Nd: YAG Laser Beam Welded AISI 316L. Procedia Engineering, 2014, 97, 892-901.	1.2	1
70	Investigation of Microstructure and Mechanical Properties of Super Alloy C-276 by Continuous Nd: YAG Laser Welding. , 2014, 5, 2233-2241.		38
71	Metallurgical and mechanical characterization of electron beam welded super-duplex stainless steel UNS 32750. Journal of Manufacturing Processes, 2014, 16, 527-534.	5.9	39
72	Characterization of Microstructure, Strength, and Toughness of Dissimilar Weldments of Inconel 625 and Duplex Stainless Steel SAF 2205. Acta Metallurgica Sinica (English Letters), 2014, 27, 1018-1030.	2.9	63

#	Article	IF	CITATIONS
73	Characterization of weld strength and impact toughness in the multi-pass welding of super-duplex stainless steel UNS 32750. Materials & Design, 2014, 60, 125-135.	5.1	76
74	Investigations on the microstructure and mechanical properties of multi-pass pulsed current gas tungsten arc weldments of Monel 400 and Hastelloy C276. Materials & Design, 2014, 64, 775-782.	5.1	47
75	Friction Stir Welded Butt Joints of AA2024 T3 and AA7075 T6 Aluminum Alloys. Procedia Engineering, 2014, 75, 98-102.	1.2	37
76	Assessment on the Metallurgical and Mechanical Properties of SA 210 A1 Rifle Tubular Joints. Procedia Engineering, 2014, 75, 108-112.	1.2	3
77	Investigation on the Mechanical Properties of SA 210C Tubular Joints. Procedia Engineering, 2014, 75, 103-107.	1.2	5
78	Investigations on Dissimilar Weldments of Inconel 625 and AISI 304. Procedia Engineering, 2014, 75, 66-70.	1.2	43
79	Investigations on Mechanical and Metallurgical Properties of Dissimilar Continuous GTA Welds of Monel 400 and C-276. Procedia Engineering, 2014, 75, 61-65.	1.2	22
80	Assessment of Mechanical Properties of PCGTA Weldments of Inconel 625. Procedia Engineering, 2014, 75, 9-13.	1.2	17
81	Influences of Tool Geometry on Metallurgical and Mechanical Properties of Friction Stir Welded Dissimilar AA 2024 and AA 5052. Procedia Engineering, 2014, 75, 154-158.	1.2	7
82	Assessment of Mechanical Properties of AISI 4140 and AISI 316 Dissimilar Weldments. Procedia Engineering, 2014, 75, 29-33.	1.2	20
83	Mechanical Characterization of Monel 400 and 316 Stainless Steel Weldments. Procedia Engineering, 2014, 75, 24-28.	1.2	19
84	Studies on Welding of Maraging Steels. Procedia Engineering, 2014, 75, 83-87.	1.2	10
85	Studies on Effect of Tool Design and Welding Parameters on the Friction Stir Welding of Dissimilar Aluminium Alloys AA 5052 $\hat{a} \in AA$ 6061. Procedia Engineering, 2014, 75, 93-97.	1.2	45
86	Studies on Friction Stir Welding of AA 2024 and AA 6061 Dissimilar Metals. Procedia Engineering, 2014, 75, 145-149.	1.2	89
87	Influence of filler metals and welding techniques on the structure–property relationships of Inconel 718 and AISI 316L dissimilar weldments. Materials & Design, 2014, 62, 175-188.	5.1	107
88	Characterization of Microstructure and Mechanical Properties of Inconel 625 and AISI 304 Dissimilar Weldments. ISIJ International, 2014, 54, 900-908.	1.4	33
89	Comparative studies on GTA and PCGTA weldments of AISI 4140 and AISI 316 dissimilar metals. International Journal of Microstructure and Materials Properties, 2013, 8, 413.	0.1	0
90	Metallization of Iron Powders by Autocatalytic Copper Plating Process. Materials and Manufacturing Processes, 2013, , 130715070617001.	4.7	1

#	Article	IF	CITATIONS
91	Assessment of Mechanical and Corrosion Properties of GTA Welded Monel 400 Plates Exposed to Air Oxidation at 700°C. Solid State Phenomena, 2012, 185, 87-89.	0.3	0
92	Hot Corrosion Studies of GTA Welded Monel 400 Exposed to Thin Film of Molten Na ₂ so ₄ - 60% V ₂ O ₅ at 600°C. Advanced Materials Research, 2012, 584, 126-130.	0.3	0
93	Hot Corrosion Studies on Gas Tungsten Arc Welded AISI 304 and AISI 4140 Dissimilar Joints. Communications in Computer and Information Science, 2012, , 436-441.	0.5	1
94	Influence of Filler Materials on Mechanical and Hot Corrosion Properties of Gas Tungsten Arc Welded AISI 304. Solid State Phenomena, 2012, 185, 113-115.	0.3	2
95	Hot Corrosion Behavior of Friction Welded AISI 4140 and AISI 304 in K2SO–60% NaCl Mixture. Journal of Materials Science and Technology, 2012, 28, 895-904.	10.7	24
96	A Comparative Study of Oxidation and Hot Corrosion of Electron Beam Welded Low Alloy Steel and Stainless Steel in Different Corrosive Environments. Communications in Computer and Information Science, 2012, , 442-449.	0.5	0
97	Effect of filler materials on the performance of gas tungsten arc welded AISI 304 and Monel 400. Materials & Design, 2012, 40, 70-79.	5.1	82
98	Hot Corrosion Behavior of Dissimilar GTA Welded Monel 400 and AISI 304. Communications in Computer and Information Science, 2012, , 450-457.	0.5	2
99	Hot Corrosion Studies on Bimetallic Combinations of Monel 400 and AISI 304 Subjected to Molten Salt Environment. Advanced Materials Research, 0, 383-390, 3217-3222.	0.3	1
100	Hot Corrosion Studies on GTA Welded AISI 304, Monel 400 Subjected to Air Oxidation and Molten Salt Environment. Advanced Materials Research, 0, 383-390, 4688-4692.	0.3	0
101	Development of Defect Free Monel 400 Welds for Marine Application. Advanced Materials Research, 0, 383-390, 4693-4696.	0.3	5
102	Characterisation of Microstructure, Mechanical Properties and Corrosion Behaviour on GTA Welded AISI 310 and Inconel 800. Advanced Materials Research, 0, 383-390, 5863-5868.	0.3	2
103	Studies on Thin Film Oxide Formation on GTA Welded AISI 304 & AISI 310S Exposed at 600°C. Advanced Materials Research, 0, 584, 131-135.	0.3	2
104	Effect of Filler Metal's Choice on the Mechanical and Corrosion Properties of Gas Tungsten Arc Welded AISI 304l. Advanced Materials Research, 0, 622-623, 335-339.	0.3	0
105	Evolution of Microstructures on GTA Welded AISI304 Subjected to Hot Corrosion at 700°C under Na ₂ SO ₄ + V ₂ O ₅ (60%). Solid State Phenomena, 0, 185, 84-86.	0.3	0
106	Investigations on the Performance of Gta Welded Dissimilar Aisi 304 and Aisi 310s Subjected to Cyclic Hot Corrosion. Advanced Materials Research, 0, 622-623, 304-308.	0.3	0
107	Effect of Filler Metal's Choice on the Mechanical and Corrosion Properties of Gas Tungsten Arc Welded Aisi 304l. Advanced Materials Research, 0, 622-623, 299-303.	0.3	0