
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9374907/publications.pdf Version: 2024-02-01

ZIOLLIANC

#	Article	IF	CITATIONS
1	2D Ruddlesden–Popper Perovskites for Optoelectronics. Advanced Materials, 2018, 30, 1703487.	21.0	613
2	Solution processed organic thermoelectrics: towards flexible thermoelectric modules. Energy and Environmental Science, 2015, 8, 401-422.	30.8	360
3	Oneâ€Step Hydrothermal Synthesis of 2D Hexagonal Nanoplates of αâ€Fe ₂ O ₃ /Graphene Composites with Enhanced Photocatalytic Activity. Advanced Functional Materials, 2014, 24, 5719-5727.	14.9	331
4	Tailoring Organic Cation of 2D Air‣table Organometal Halide Perovskites for Highly Efficient Planar Solar Cells. Advanced Energy Materials, 2017, 7, 1700162.	19.5	312
5	Insights into charge carrier dynamics in organo-metal halide perovskites: from neat films to solar cells. Chemical Society Reviews, 2017, 46, 5714-5729.	38.1	197
6	Structure and Growth Control of Organic–Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals. Advanced Science, 2016, 3, 1500392.	11.2	193
7	Thick Film Polymer Solar Cells Based on Naphtho[1,2â€∢i>c:5,6â€∢i>c]bis[1,2,5]thiadiazole Conjugated Polymers with Efficiency over 11%. Advanced Energy Materials, 2017, 7, 1700944.	19.5	136
8	Efficient and Balanced Charge Transport Revealed in Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 4471-4475.	8.0	131
9	Non-Thermal Annealing Fabrication of Efficient Planar Perovskite Solar Cells with Inclusion of NH ₄ Cl. Chemistry of Materials, 2015, 27, 1448-1451.	6.7	123
10	Triple-cation mixed-halide perovskites: towards efficient, annealing-free and air-stable solar cells enabled by Pb(SCN)2 additive. Scientific Reports, 2017, 7, 46193.	3.3	109
11	Ultrasensitive Photodetectors Based on Island-Structured CH ₃ NH ₃ PbI ₃ Thin Films. ACS Applied Materials & Interfaces, 2015, 7, 21634-21638.	8.0	108
12	Bendable nâ€Type Metallic Nanocomposites with Large Thermoelectric Power Factor. Advanced Materials, 2017, 29, 1604752.	21.0	96
13	Inter-phase charge and energy transfer in Ruddlesden–Popper 2D perovskites: critical role of the spacing cations. Journal of Materials Chemistry A, 2018, 6, 6244-6250.	10.3	94
14	3D Printing Fabrication of Amorphous Thermoelectric Materials with Ultralow Thermal Conductivity. Small, 2015, 11, 5889-5894.	10.0	93
15	Ternary Blend Strategy for Achieving Highâ€Efficiency Organic Solar Cells with Nonfullerene Acceptors Involved. Advanced Functional Materials, 2018, 28, 1802004.	14.9	85
16	Electroluminochromic Materials and Devices. Advanced Functional Materials, 2016, 26, 2783-2799.	14.9	84
17	Phase Engineering in Quasi-2D Ruddlesden–Popper Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 2627-2631.	4.6	82
18	Interfacial engineering by using self-assembled monolayer in mesoporous perovskite solar cell. RSC Advances, 2015, 5, 94290-94295.	3.6	76

#	Article	IF	CITATIONS
19	Long-term stable silver nanowire transparent composite as bottom electrode for perovskite solar cells. Nano Research, 2018, 11, 1998-2011.	10.4	71
20	Lead Replacement in CH ₃ NH ₃ PbI ₃ Perovskites. Advanced Electronic Materials, 2015, 1, 1500089.	5.1	67
21	Swift Electrofluorochromism of Donor–Acceptor Conjugated Polytriphenylamines. ACS Applied Materials & Interfaces, 2016, 8, 18301-18308.	8.0	64
22	Benefiting from Spontaneously Generated 2D/3D Bulkâ€Heterojunctions in Ruddlesdenâ^'Popper Perovskite by Incorporation of Sâ€Bearing Spacer Cation. Advanced Science, 2019, 6, 1900548.	11.2	61
23	Defect Engineering in π-Conjugated Polymers. Chemistry of Materials, 2009, 21, 4914-4919.	6.7	59
24	Hot-Injection Synthesis of Cu-Doped Cu ₂ ZnSnSe ₄ Nanocrystals to Reach Thermoelectric <i>zT</i> of 0.70 at 450 °C. ACS Applied Materials & Interfaces, 2015, 7, 24403-24408.	8.0	55
25	Enabling room-temperature processed highly efficient and stable 2D Ruddlesden–Popper perovskite solar cells with eliminated hysteresis by synergistic exploitation of additives and solvents. Journal of Materials Chemistry A, 2019, 7, 2015-2021.	10.3	55
26	Advancing Tin Halide Perovskites: Strategies toward the ASnX ₃ Paradigm for Efficient and Durable Optoelectronics. ACS Energy Letters, 2020, 5, 2052-2086.	17.4	54
27	Nonconfinement Structure Revealed in Dion–Jacobson Type Quasiâ€2D Perovskite Expedites Interlayer Charge Transport. Small, 2019, 15, e1905081.	10.0	51
28	Compensating Poly(3â€hexylthiophene) Reveals Its Doping Density and Its Strong Exciton Quenching by Free Carriers. Advanced Materials, 2012, 24, 3258-3262.	21.0	49
29	Efficient and Stable Ternary Organic Solar Cells Based on Two Planar Nonfullerene Acceptors with Tunable Crystallinity and Phase Miscibility. ACS Applied Materials & Interfaces, 2017, 9, 20704-20710.	8.0	47
30	Nanomaterials in Electrochemiluminescence Sensors. ChemElectroChem, 2017, 4, 1651-1662.	3.4	46
31	Recent Advances in nâ€Type Thermoelectric Nanocomposites. Advanced Electronic Materials, 2019, 5, 1800943.	5.1	46
32	Dimensional crossover of heat conduction in amorphous polyimide nanofibers. National Science Review, 2018, 5, 500-506.	9.5	43
33	Flexible Thermoelectric Generators with Ultrahigh Output Power Enabled by Magnetic Field–Aligned Metallic Nanowires. Advanced Electronic Materials, 2018, 4, 1800200.	5.1	42
34	Implementing an intermittent spin-coating strategy to enable bottom-up crystallization in layered halide perovskites. Nature Communications, 2021, 12, 6603.	12.8	35
35	Nonvolatile chlorinated additives adversely influence CH ₃ NH ₃ PbI ₃ based planar solar cells. Journal of Materials Chemistry A, 2015, 3, 9137-9140.	10.3	34
36	Thermoelectric Enhancement of Ternary Copper Chalcogenide Nanocrystals by Magnetic Nickel Doping. Advanced Electronic Materials, 2016, 2, 1500473.	5.1	30

#	Article	IF	CITATIONS
37	Unveiling Excitonic Dynamics in Highâ€Efficiency Nonfullerene Organic Solar Cells to Direct Morphological Optimization for Suppressing Charge Recombination. Advanced Science, 2019, 6, 1802103.	11.2	30
38	Air‧table and Selfâ€Driven Perovskite Photodiodes with High On/Off Ratio and Swift Photoresponse. Small, 2018, 14, e1802764.	10.0	26
39	Mechanistic Investigation into Dynamic Function of Third Component Incorporated in Ternary Nearâ€Infrared Nonfullerene Organic Solar Cells. Advanced Functional Materials, 2020, 30, 2001564.	14.9	25
40	Imidazole additives in 2D halide perovskites: impacts of –CN <i>versus</i> –CH ₃ substituents reveal the mediation of crystal growth by phase buffering. Energy and Environmental Science, 2022, 15, 3321-3330.	30.8	25
41	Chemically Treating Poly(3-hexylthiophene) Defects to Improve Bulk Heterojunction Photovoltaics. ACS Applied Materials & Interfaces, 2011, 3, 2042-2050.	8.0	24
42	FAPbCl ₃ Perovskite as Alternative Interfacial Layer for Highly Efficient and Stable Polymer Solar Cells. Advanced Electronic Materials, 2016, 2, 1600329.	5.1	24
43	Light and Thermally Induced Evolutional Charge Transport in CH3NH3PbI3 Perovskite Solar Cells. ACS Energy Letters, 2016, 1, 1000-1006.	17.4	23
44	Composition Engineering in Two-Dimensional Pb–Sn-Alloyed Perovskites for Efficient and Stable Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 21343-21348.	8.0	23
45	Semiconducting polymer contributes favorably to the Seebeck coefficient in multi-component, high-performance n-type thermoelectric nanocomposites. Journal of Materials Chemistry A, 2020, 8, 9797-9805.	10.3	20
46	Synergetic Solvent Engineering of Film Nanomorphology to Enhance Planar Perylene Diimide-Based Organic Photovoltaics. ACS Applied Materials & Interfaces, 2016, 8, 22418-22424.	8.0	18
47	2D/1A Strategy to Regulate Film Morphology for Efficient and Stable Nonfullerene Organic Solar Cells. Macromolecules, 2017, 50, 6954-6960.	4.8	18
48	Transient Extraction of Holes and Electrons Separately Unveils the Transport Dynamics in Organic Photovoltaics. Advanced Electronic Materials, 2016, 2, 1500333.	5.1	17
49	Non-Conjugated Polymers for Organic Photovoltaics: Physical and Optoelectronic Properties of Poly(perylene diimides). Journal of Physical Chemistry C, 2010, 114, 6784-6790.	3.1	16
50	Asymmetric Spacer in Dion–Jacobson Halide Perovskites Induces Staggered Alignment to Direct Outâ€ofâ€Plane Carrier Transport and Enhances Ambient Stability Simultaneously. Advanced Functional Materials, 2021, 31, 2104342.	14.9	16
51	Correlating Molecular Structures with Transport Dynamics in High-Efficiency Small-Molecule Organic Photovoltaics. ACS Applied Materials & Interfaces, 2015, 7, 13137-13141.	8.0	15
52	Developing Yâ€Branched Polymer Acceptor with 3D Architecture to Reconcile Between Crystallinity and Miscibility Yielding >15%AEfficient Allâ€Polymer Solar Cells. Advanced Science, 2022, 9, .	11.2	15
53	Achieving Efficient pâ€Type Organic Thermoelectrics by Modulation of Acceptor Unit in Photovoltaic <i>ï€</i> â€Conjugated Copolymers. Advanced Science, 2022, 9, e2103646.	11.2	13
54	Solventâ€Mediated nâ€Type Doping of SWCNTs to Achieve Superior Thermoelectric Power Factor. Advanced Materials Technologies, 2020, 5, 2000288.	5.8	12

#	Article	IF	CITATIONS
55	Extraction Current Transients for Selective Charge-Carrier Mobility Determination in Non-Fullerene and Ternary Bulk Heterojunction Organic Solar Cells. ACS Applied Energy Materials, 2020, 3, 9190-9197.	5.1	10
56	Organic and Hybrid Thermoelectrics. Advanced Electronic Materials, 2019, 5, 1900650.	5.1	9
57	Developing Halogenâ€Free Polymer Donors for Efficient Nonfullerene Organic Solar Cells by Addition of Highly Electronâ€Deficient Diketopyrrolopyrrole Unit. Solar Rrl, 2021, 5, 2100142.	5.8	9
58	Ultra-high electrical conductivity and superior bendability simultaneously enabled in Ag nanowire based nanocomposites. RSC Advances, 2017, 7, 44254-44258.	3.6	7
59	Topological Design of Inorganic–Organic Thermoelectric Nanocomposites Based on "Electron–Percolation Phonon–Insulator―Concept. ACS Applied Energy Materials, 2018, 1, 2927-2933.	5.1	7
60	Activation Energy Spectra: Insights into Transport Limitations of Organic Semiconductors and Photovoltaic Cells. Advanced Functional Materials, 2012, 22, 1087-1091.	14.9	6
61	Fine Control of Side Chains in Random Ï€â€Conjugated Terpolymers for Organic Photovoltaics. Macromolecular Chemistry and Physics, 2016, 217, 1513-1520.	2.2	6
62	Efficient pâ€Type Doping of Tin Halide Perovskite via Sequential Diffusion for Thermoelectrics. Small Science, 2022, 2, .	9.9	5
63	Facile fabrication of highly flexible, porous PEDOT:PSS/SWCNTs films for thermoelectric applications. Chinese Physics B, 2022, 31, 027303.	1.4	4
64	Perovskites: Structure and Growth Control of Organic–Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals (Adv. Sci. 4/2016). Advanced Science, 2016, 3, .	11.2	2
65	Enhancing charge separation in conjugated microporous polymers for efficient photocatalytic hydrogen evolution. Materials Advances, 2021, 2, 7379-7383.	5.4	2
66	3D Printing: 3D Printing Fabrication of Amorphous Thermoelectric Materials with Ultralow Thermal Conductivity (Small 44/2015). Small, 2015, 11, 5888-5888.	10.0	1
67	Solution Processable n-Type Perylene Diimide Copolymers for Organic Photovoltaics. Materials Research Society Symposia Proceedings, 2011, 1286, 58.	0.1	0
68	Conjugated Polymers-Based Chemical and Biological Sensors. , 2016, , 175-203.		0