Chiara Lauritano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9374575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	First identification and characterization of detoxifying plastic-degrading DBP hydrolases in the marine diatom Cylindrotheca closterium. Science of the Total Environment, 2022, 812, 152535.	3.9	6
2	Lipid mediators in marine diatoms. Aquatic Ecology, 2022, 56, 377-397.	0.7	5
3	Promising Antiproliferative Compound From the Green Microalga Dunaliella tertiolecta Against Human Cancer Cells. Frontiers in Marine Science, 2022, 9, .	1.2	9
4	From the Sea for the Sight: Marine Derived Products for Human Vision. Frontiers in Aging Neuroscience, 2022, 14, .	1.7	2
5	De Novo Transcriptome of the Flagellate Isochrysis galbana Identifies Genes Involved in the Metabolism of Antiproliferative Metabolites. Biology, 2022, 11, 771.	1.3	5
6	Jellyfish as an Alternative Source of Bioactive Antiproliferative Compounds. Marine Drugs, 2022, 20, 350.	2.2	4
7	Multiple Myeloma: Possible Cure from the Sea. Cancers, 2022, 14, 2965.	1.7	4
8	Recent Discoveries on Marine Organism Immunomodulatory Activities. Marine Drugs, 2022, 20, 422.	2.2	14
9	Fish Waste: From Problem to Valuable Resource. Marine Drugs, 2021, 19, 116.	2.2	193
10	A Metataxonomic Approach Reveals Diversified Bacterial Communities in Antarctic Sponges. Marine Drugs, 2021, 19, 173.	2.2	14
11	Unlocking the Health Potential of Microalgae as Sustainable Sources of Bioactive Compounds. International Journal of Molecular Sciences, 2021, 22, 4383.	1.8	43
12	Promising Activities of Marine Natural Products against Hematopoietic Malignancies. Biomedicines, 2021, 9, 645.	1.4	6
13	Bioactivity Screening of Antarctic Sponges Reveals Anticancer Activity and Potential Cell Death via Ferroptosis by Mycalols. Marine Drugs, 2021, 19, 459.	2.2	16
14	Glutathione S-Transferases in Marine Copepods. Journal of Marine Science and Engineering, 2021, 9, 1025.	1.2	8
15	A Treasure of Bioactive Compounds from the Deep Sea. Biomedicines, 2021, 9, 1556.	1.4	11
16	Chlamydomonas Responses to Salinity Stress and Possible Biotechnological Exploitation. Journal of Marine Science and Engineering, 2021, 9, 1242.	1.2	16
17	First Report of OvoA Gene in Marine Arthropods: A New Candidate Stress Biomarker in Copepods. Marine Drugs, 2021, 19, 647.	2.2	7
18	Protective Effects of New Antioxidants in OTA-Treated Chicken Kidney. Medical Sciences Forum, 2021, 2, 18.	0.5	1

CHIARA LAURITANO

#	Article	IF	CITATIONS
19	Curcumin Supplementation Protects Broiler Chickens Against the Renal Oxidative Stress Induced by the Dietary Exposure to Low Levels of Aflatoxin B1. Frontiers in Veterinary Science, 2021, 8, 822227.	0.9	25
20	Potential Approaches Versus Approved or Developing Chronic Myeloid Leukemia Therapy. Frontiers in Oncology, 2021, 11, 801779.	1.3	13
21	Editorial of Special Issue "Microalgal Molecules and Enzymesâ€. International Journal of Molecular Sciences, 2021, 22, 13450.	1.8	1
22	Microalgae with Immunomodulatory Activities. Marine Drugs, 2020, 18, 2.	2.2	91
23	RNA-Seq and differential gene expression analysis in Temora stylifera copepod females with contrasting non-feeding nauplii survival rates: an environmental transcriptomics study. BMC Genomics, 2020, 21, 693.	1.2	14
24	A Review of Toxins from Cnidaria. Marine Drugs, 2020, 18, 507.	2.2	45
25	De novo Transcriptome of the Non-saxitoxin Producing Alexandrium tamutum Reveals New Insights on Harmful Dinoflagellates. Marine Drugs, 2020, 18, 386.	2.2	21
26	De Novo Transcriptome Assembly and Gene Expression Profiling of the Copepod Calanus helgolandicus Feeding on the PUA-Producing Diatom Skeletonema marinoi. Marine Drugs, 2020, 18, 392.	2.2	23
27	Chemical Defense in Marine Organisms. Marine Drugs, 2020, 18, 518.	2.2	8
28	Physiological and Molecular Responses to Main Environmental Stressors of Microalgae and Bacteria in Polar Marine Environments. Microorganisms, 2020, 8, 1957.	1.6	18
29	First De Novo Transcriptome of the Copepod Rhincalanus gigas from Antarctic Waters. Biology, 2020, 9, 410.	1.3	6
30	Pheophorbide a: State of the Art. Marine Drugs, 2020, 18, 257.	2.2	56
31	Effects of a Red Orange and Lemon Extract in Obese Diabetic Zucker Rats: Role of Nicotinamide Adenine Dinucleotide Phosphate Oxidase. Journal of Clinical Medicine, 2020, 9, 1600.	1.0	6
32	Monogalactosyldiacylglycerol and Sulfolipid Synthesis in Microalgae. Marine Drugs, 2020, 18, 237.	2.2	27
33	First evidence of anticancer and antimicrobial activity in Mediterranean mesopelagic species. Scientific Reports, 2020, 10, 4929.	1.6	20
34	De novo transcriptome of the diatom Cylindrotheca closterium identifies genes involved in the metabolism of anti-inflammatory compounds. Scientific Reports, 2020, 10, 4138.	1.6	22
35	Lysophosphatidylcholines and Chlorophyll-Derived Molecules from the Diatom Cylindrotheca closterium with Anti-Inflammatory Activity. Marine Drugs, 2020, 18, 166.	2.2	50
36	Ten-Year Research Update Review: Antiviral Activities from Marine Organisms. Biomolecules, 2020, 10, 1007.	1.8	34

CHIARA LAURITANO

#	Article	IF	CITATIONS
37	Marine Collagen from Alternative and Sustainable Sources: Extraction, Processing and Applications. Marine Drugs, 2020, 18, 214.	2.2	165
38	In Silico Identification of Type III PKS Chalcone and Stilbene Synthase Homologs in Marine Photosynthetic Organisms. Biology, 2020, 9, 110.	1.3	10
39	Microalgal Enzymes with Biotechnological Applications. Marine Drugs, 2019, 17, 459.	2.2	43
40	Amphidinol 22, a New Cytotoxic and Antifungal Amphidinol from the Dinoflagellate Amphidinium carterae. Marine Drugs, 2019, 17, 385.	2.2	62
41	Marine Natural Products from Microalgae: An -Omics Overview. Marine Drugs, 2019, 17, 269.	2.2	69
42	New molecular insights on the response of the green alga Tetraselmis suecica to nitrogen starvation. Scientific Reports, 2019, 9, 3336.	1.6	47
43	First identification of marine diatoms with anti-tuberculosis activity. Scientific Reports, 2018, 8, 2284.	1.6	51
44	Toxigenic effects of two benthic diatoms upon grazing activity of the sea urchin: morphological, metabolomic and de novo transcriptomic analysis. Scientific Reports, 2018, 8, 5622.	1.6	28
45	Grand Challenges in Marine Biotechnology: Overview of Recent EU-Funded Projects. Grand Challenges in Biology and Biotechnology, 2018, , 425-449.	2.4	23
46	Biotechnological Applications of Bioactive Peptides From Marine Sources. Advances in Microbial Physiology, 2018, 73, 171-220.	1.0	67
47	Zebrafish-based identification of the antiseizure nucleoside inosine from the marine diatom Skeletonema marinoi. PLoS ONE, 2018, 13, e0196195.	1.1	49
48	Marine Microalgae with Anti-Cancer Properties. Marine Drugs, 2018, 16, 165.	2.2	177
49	Linking gene expression to productivity to unravel long- and short-term responses of seagrasses exposed to CO2 in volcanic vents. Scientific Reports, 2017, 7, 42278.	1.6	20
50	De novo transcriptome of the cosmopolitan dinoflagellate Amphidinium carterae to identify enzymes with biotechnological potential. Scientific Reports, 2017, 7, 11701.	1.6	52
51	Depth-specific fluctuations of gene expression and protein abundance modulate the photophysiology in the seagrass Posidonia oceanica. Scientific Reports, 2017, 7, 42890.	1.6	57
52	Nutrient Loading Fosters Seagrass Productivity Under Ocean Acidification. Scientific Reports, 2017, 7, 13732.	1.6	29
53	Respiratory oxygen consumption in the seagrass Zostera marina varies on a diel basis and is partly affected by light. Marine Biology, 2017, 164, 140.	0.7	14
54	Bioactivity Screening of Microalgae for Antioxidant, Anti-Inflammatory, Anticancer, Anti-Diabetes, and Antibacterial Activities. Frontiers in Marine Science, 2016, 3, .	1.2	249

CHIARA LAURITANO

#	Article	IF	CITATIONS
55	Marine Organisms with Anti-Diabetes Properties. Marine Drugs, 2016, 14, 220.	2.2	81
56	New oxylipins produced at the end of a diatom bloom and their effects on copepod reproductive success and gene expression levels. Harmful Algae, 2016, 55, 221-229.	2.2	40
57	The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature, 2016, 530, 331-335.	13.7	460
58	High-quality RNA extraction from copepods for Next Generation Sequencing: A comparative study. Marine Genomics, 2015, 24, 115-118.	0.4	20
59	Effects of the oxylipin-producing diatom Skeletonema marinoi on gene expression levels of the calanoid copepod Calanus sinicus. Marine Genomics, 2015, 24, 89-94.	0.4	27
60	Insights into possible cell-death markers in the diatom Skeletonema marinoi in response to senescence and silica starvation. Marine Genomics, 2015, 24, 81-88.	0.4	25
61	Key genes as stress indicators in the ubiquitous diatom Skeletonema marinoi. BMC Genomics, 2015, 16, 411.	1.2	50
62	Insights into the transcriptome of the marine copepod Calanus helgolandicus feeding on the oxylipin-producing diatom Skeletonema marinoi. Harmful Algae, 2014, 31, 153-162.	2.2	31
63	Changes in expression of stress genes in copepods feeding upon a non-brevetoxin-producing strain of the dinoflagellate Karenia brevis. Harmful Algae, 2013, 28, 23-30.	2.2	23
64	Gene expression patterns and stress response in marine copepods. Marine Environmental Research, 2012, 76, 22-31.	1.1	89
65	Reference genes assessment for the seagrass Posidonia oceanica in different salinity, pH and light conditions. Marine Biology, 2012, 159, 1269-1282.	0.7	47
66	Multi-generation cultivation of the copepod Calanus helgolandicus in a re-circulating system. Journal of Experimental Marine Biology and Ecology, 2012, 418-419, 46-58.	0.7	21
67	Copepod Population-Specific Response to a Toxic Diatom Diet. PLoS ONE, 2012, 7, e47262.	1.1	57
68	First molecular evidence of diatom effects in the copepod Calanus helgolandicus. Journal of Experimental Marine Biology and Ecology, 2011, 404, 79-86.	0.7	43
69	Molecular Evidence of the Toxic Effects of Diatom Diets on Gene Expression Patterns in Copepods. PLoS ONE, 2011, 6, e26850.	1.1	46