Victor A Karachevtsev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9374428/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spectroscopy analysis of the alignment of nanoassemblies of DNA-wrapped carbon nanotubes in stretched gelatin film. Low Temperature Physics, 2022, 48, 286-292.	0.6	Ο
2	7th International Conference "Nanobiophysics: Fundamental and Applied Aspects―Kharkiv, Ukraine, October 4–8, 2021. Low Temperature Physics, 2022, 48, 275-277.	0.6	1
3	Low-temperature electrical conductivity of composite film formed by carbon nanotubes with MoS ₂ flakes. Low Temperature Physics, 2022, 48, 322-329.	0.6	0
4	Interaction of double-stranded polynucleotide poly(A:U) with graphene/graphene oxide. European Physical Journal E, 2021, 44, 24.	1.6	0
5	Composite films of graphene oxide with semiconducting carbon nanotubes: Raman spectroscopy characterization. Low Temperature Physics, 2021, 47, 206-213.	0.6	4
6	Biomolecules and their complexes with nanostructures. Low Temperature Physics, 2021, 47, 179-180.	0.6	0
7	Coronene-uracil complexes embedded in argon matrices: FTIR spectroscopy and quantum-mechanical calculations. Low Temperature Physics, 2021, 47, 325-334.	0.6	О
8	Modeling of nucleobase/oligonucleotide interaction with graphene and graphene oxide: the role of charging and/or oxidizing the graphene surface. Molecular Crystals and Liquid Crystals, 2020, 697, 49-59.	0.9	1
9	Adsorption of Polyadenylic acid on graphene oxide: experiments and computer modeling. Journal of Biomolecular Structure and Dynamics, 2020, , 1-13.	3.5	2
10	The Effect of Divalent Metal Ions on the Temperature Stability of Poly(I:C) Duplex. Journal of Spectroscopy, 2020, 2020, 1-7.	1.3	3
11	Pheophorbide–phenazinium conjugate as a fluorescent light-up probe for G-quadruplex structure. Journal of Molecular Structure, 2020, 1214, 128218.	3.6	2
12	Comparison of temperature dependences of electrical conductivity of composite rGO-SWNT film with rGO and SWNT films. Low Temperature Physics, 2020, 46, 285-292.	0.6	4
13	Change in the Microviscosity of Erythrocyte Membranes and Proteins in Blood Plasma after Graphene Oxide Addition: The ESR Spectroscopy Study. Journal of Spectroscopy, 2019, 2019, 1-8.	1.3	Ο
14	The temperature dependence of electron transport in a composite film of graphene oxide with single-wall carbon nanotubes: an analysis and comparison with a nanotube film. Low Temperature Physics, 2019, 45, 1109-1116.	0.6	5
15	Composite films of single-walled carbon nanotubes with strong oxidized graphene: Characterization with spectroscopy, microscopy, conductivity measurements (5–291 K) and computer modeling. Low Temperature Physics. 2019. 45. 754-762.	0.6	6
16	Nucleoside conformers in low-temperature argon matrices: Fourier transform IR spectroscopy of isolated thymidine and deuterothymidine molecules and quantum-mechanical calculations. Low Temperature Physics, 2019, 45, 1008-1017.	0.6	9
17	Interaction of Single Walled Carbon Nanotube with Graphene: Quantum-Chemical Calculation and Molecular Dynamics Study. , 2019, , .		0
18	Spectroscopic study of binding of a cationic Pheophorbide-a to an antiparallel quadruplex Tel22. Biopolymers and Cell, 2019, 35, 129-142.	0.4	1

#	Article	IF	CITATIONS
19	Graphene induced molecular flattening of meso -5,10,15,20-tetraphenyl porphyrin: DFT calculations and molecular dynamics simulations. Computational and Theoretical Chemistry, 2018, 1133, 1-6.	2.5	13
20	Enhancement of the absorption bands in the infrared spectra of low-temperature uracil films by interference. Low Temperature Physics, 2018, 44, 1215-1218.	0.6	1
21	Structures and infrared spectra of 5-chlorouracil molecules in the low-temperature inert Ar, Ne matrices and composite films with oxide graphene. Low Temperature Physics, 2018, 44, 847-855.	0.6	1
22	Behavior of hybrid thermosensitive nanosystem dextran-graft-PNIPAM/gold nanoparticles: characterization within LCTS. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	10
23	DNA-wrapped carbon nanotubes aligned in stretched gelatin films: Polarized resonance Raman and absorption spectroscopy study. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 93, 92-96.	2.7	9
24	Comparison of noncovalent interactions of zigzag and armchair carbon nanotubes with heterocyclic and aromatic compounds: Imidazole and benzene, imidazophenazines, and tetracene. Chemical Physics, 2017, 483-484, 68-77.	1.9	5
25	Tuning the carbon nanotube photoluminescence enhancement at addition of cysteine through the change of external conditions. Materials Chemistry and Physics, 2017, 186, 131-137.	4.0	8
26	Infrared spectra of 5-fluorouracil molecules isolated in inert Ar matrices, and their films on graphene oxide at 6 K. Low Temperature Physics, 2017, 43, 400-408.	0.6	8
27	Binding of Polycitydylic Acid to Graphene Oxide: Spectroscopic Study and Computer Modeling. Journal of Physical Chemistry C, 2017, 121, 18221-18233.	3.1	18
28	Enhancement of Photoluminescence from Semiconducting Nanotubes in Aqueous Suspensions due to Cysteine and Dithiothreitol Doping: Influence of the Sonication Treatment. Nanoscale Research Letters, 2016, 11, 490.	5.7	4
29	Noncovalent Interaction of Graphene with Heterocyclic Compounds: Benzene, Imidazole, Tetracene, and Imidazophenazines. ChemPhysChem, 2016, 17, 1204-1212.	2.1	22
30	Enhancement of infrared absorption of low-temperature uracil thin films by a nanostructured silver surface. Low Temperature Physics, 2016, 42, 106-110.	0.6	0
31	Comparison of Raman scattering in non-polymerized and photo-polymerized fullerene films at temperatures of 5–300 K. Low Temperature Physics, 2016, 42, 1144-1150.	0.6	0
32	Interaction of a tricationic meso-substituted porphyrin with guanine-containing polyribonucleotides of various structures. Methods and Applications in Fluorescence, 2016, 4, 034005.	2.3	6
33	Probing the Influence of Amino Acids on Photoluminescence from Carbon Nanotubes Suspended with DNA. Journal of Fluorescence, 2016, 26, 1951-1958.	2.5	5
34	The effect of protonation of cytosine and adenine on their interactions with carbon nanotubes. Journal of Molecular Graphics and Modelling, 2016, 70, 77-84.	2.4	10
35	Enhancement of Luminescence from a Carbon Nanotube Aqueous Suspension at the Cysteine Doping: Influence of the Adsorbed Polymer. Ukrainian Journal of Physics, 2016, 61, 932-939.	0.2	0
36	The conformational structure of adenosine molecules, isolated in low-temperature Ar matrices. Low Temperature Physics, 2015, 41, 936-941.	0.6	6

VICTOR A KARACHEVTSEV

#	Article	IF	CITATIONS
37	Influence of cysteine doping on photoluminescence intensity from semiconducting single-walled carbon nanotubes. Chemical Physics Letters, 2015, 623, 51-54.	2.6	11
38	Spectroscopic Studies on Binding of Porphyrin-Phenazine Conjugate to Four-Stranded Poly(G). Journal of Fluorescence, 2015, 25, 1013-1021.	2.5	4
39	Hybridization of Homopolynucleotides with Different Base Ordering on the Carbon Nanotube Surface. Journal of Physical Chemistry C, 2015, 119, 11991-12001.	3.1	4
40	Binding of Metallated Porphyrin-Imidazophenazine Conjugate to Tetramolecular Quadruplex Formed by Poly(G): a Spectroscopic Investigation. Journal of Fluorescence, 2015, 25, 1897-1904.	2.5	5
41	Manifestation of Fermi resonance in the vibrational spectra of 5-ioduracil, and its deutero-derivatives isolated in low-temperature Ar matrices. Low Temperature Physics, 2014, 40, 1097-1103.	0.6	4
42	Enhancement of single-walled nanotubes luminescence intensity upon dithiothreitol doping. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2014, 117, 428-433.	0.6	2
43	Photoluminescence intensity enhancement in SWNT aqueous suspensions due to reducing agent doping: Influence of adsorbed biopolymer. Chemical Physics, 2014, 438, 23-30.	1.9	18
44	Excitonic energy transfer in polymer wrapped carbon nanotubes in gradually grown nanoassemblies. Physical Chemistry Chemical Physics, 2014, 16, 10914-10922.	2.8	9
45	Controlled Aggregation of Biopolymerâ€< scp>Wrapped Carbon Nanotubes in Aqueous Suspension, Induced by Cationic Porphyrin. Macromolecular Symposia, 2014, 335, 51-57.	0.7	2
46	Self-assemblies of tricationic porphyrin on inorganic polyphosphate. Biophysical Chemistry, 2014, 185, 39-46.	2.8	6
47	Interactions of the Watson–Crick nucleic acid base pairs with carbon nanotubes and graphene: DFT and MP2 study. Chemical Physics Letters, 2014, 610-611, 186-191.	2.6	13
48	Hybridization of poly(rI) with poly(rC) adsorbed to the carbon nanotube surface. Nanoscale Research Letters, 2014, 9, 157.	5.7	1
49	Adsorption of Biopolymers on SWCNT: Ordered Poly(rC) and Disordered Poly(rI). Journal of Physical Chemistry B, 2013, 117, 2636-2644.	2.6	17
50	Fermi resonance in Ne, Ar and Kr-matrix infrared spectra of 5-bromouracil. Low Temperature Physics, 2013, 39, 546-551.	0.6	14
51	Comparison of Poly(rI) and Poly(rA) Adsorption on Carbon Nanotubes. Springer Proceedings in Physics, 2013, , 275-290.	0.2	0
52	Raman scattering in non-polymerized and photo-polymerized C60films at 5 K. Low Temperature Physics, 2012, 38, 854-862.	0.6	4
53	Noncovalent Interaction of Methylene Blue with Carbon Nanotubes: Theoretical and Mass Spectrometry Characterization. Journal of Physical Chemistry C, 2012, 116, 20579-20590.	3.1	46

54 Photophysical Properties of SWNT Interfaced with DNA. , 2012, , 89-163.

4

#	Article	IF	CITATIONS
55	Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials. , 2012, , .		12
56	Unusual aggregation of poly(rC)-wrapped carbon nanotubes in aqueous suspension induced by cationic porphyrin. Journal of Materials Chemistry, 2012, 22, 10795.	6.7	10
57	Achieving High Midâ€IR Bolometric Responsivity for Anisotropic Composite Materials from Carbon Nanotubes and Polymers. Advanced Functional Materials, 2012, 22, 2177-2186.	14.9	44
58	Noncovalent Interaction of Single-Walled Carbon Nanotubes with 1-Pyrenebutanoic Acid Succinimide Ester and Glucoseoxidase. Journal of Physical Chemistry C, 2011, 115, 21072-21082.	3.1	54
59	Peculiarities of Homooligonucleotides Wrapping around Carbon Nanotubes: Molecular Dynamics Modeling. Journal of Physical Chemistry B, 2011, 115, 9271-9279.	2.6	33
60	Comparative study on protection properties of anionic surfactants (SDS, SDBS) and DNA covering of singleâ€walled carbon nanotubes against pH influence: luminescence and absorption spectroscopy study. Materialwissenschaft Und Werkstofftechnik, 2011, 42, 41-46.	0.9	13
61	Binding of polynucleotides with singleâ€walled carbon nanotubes: Effect of temperature. Materialwissenschaft Und Werkstofftechnik, 2011, 42, 92-97.	0.9	4
62	Spectroscopic Detection of Tetracationic Porphyrin H-Aggregation on Polyanionic Matrix of Inorganic Polyphosphate. Journal of Fluorescence, 2010, 20, 695-702.	2.5	24
63	Decrease of carbon nanotube UV light absorption induced by π–π-stacking interaction with nucleotide bases. Carbon, 2010, 48, 3682-3691.	10.3	37
64	Raman spectroscopy of DNA-wrapped single-walled carbon nanotube films at 295 and 5K. Low Temperature Physics, 2010, 36, 373-381.	0.6	9
65	Nanohybrid Structures Formed by Carbon Nanotubes with Long Polynucleotide. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 18, 531-537.	2.1	5
66	Raman Spectroscopy and Theoretical Characterization of Nanohybrids of Porphyrins with Carbon Nanotubes. Journal of Physical Chemistry C, 2010, 114, 16215-16222.	3.1	24
67	Raman Spectroscopy Study and First-Principles Calculations of the Interaction between Nucleic Acid Bases and Carbon Nanotubes. Journal of Physical Chemistry A, 2009, 113, 3621-3629.	2.5	49
68	IR Spectroscopy andab initiocalculations of imidazophenazine and its derivatives in a low-temperature argon matrix. Low Temperature Physics, 2009, 35, 491-502.	0.6	2
69	Adsorption of Poly(rA) on the Carbon Nanotube Surface and its Hybridization with Poly(rU). ChemPhysChem, 2008, 9, 2010-2018.	2.1	14
70	Stacking interaction of cytosine with carbon nanotubes: MP2, DFT and Raman spectroscopy study. Chemical Physics Letters, 2008, 459, 153-158.	2.6	58
71	Pre-resonance Raman and IR absorption spectroscopy of imidazophenazine and its derivatives: Experimental and ab initio study. Vibrational Spectroscopy, 2008, 47, 71-81.	2.2	3
72	SWNT-DNA and SWNT-polyC Hybrids: AFM Study and Computer Modeling. Journal of Nanoscience and Nanotechnology, 2008, 8, 1473-1480.	0.9	30

VICTOR A KARACHEVTSEV

#	Article	IF	CITATIONS
73	RNA-Wrapped Carbon Nanotubes Aggregation Induced by Polymer Hybridization. Molecular Crystals and Liquid Crystals, 2008, 497, 7/[339]-19/[351].	0.9	8
74	Luminescence investigations of hybrids of carbon nanotubes with DNA in a water suspension and film at 5–290K. Low Temperature Physics, 2008, 34, 1033-1037.	0.6	3
75	SWNT-DNA and SWNT-polyC Hybrids: AFM Study and Computer Modeling. Journal of Nanoscience and Nanotechnology, 2008, 8, 1473-1480.	0.9	20
76	SWNT-DNA and SWNT-polyC hybrids: AFM study and computer modeling. Journal of Nanoscience and Nanotechnology, 2008, 8, 1473-80.	0.9	2
77	Luminescence and Raman scattering of nonpolymerized and photopolymerized fullerene films at 297 and 5K. Low Temperature Physics, 2007, 33, 704-709.	0.6	6
78	FTIR spectra and conformations of 2′-deoxyuridine in Kr matrices. Low Temperature Physics, 2007, 33, 590-594.	0.6	21
79	Emission of carbon nanotube-DNA-GOX bionanohybrid for glucose detection. Proceedings of SPIE, 2007, , .	0.8	0
80	Permeability of C60 films deposited on polycarbonatesyloxane to N2, O2, CH4, and He gases. Applied Surface Science, 2007, 253, 3062-3065.	6.1	6
81	Glucose sensing based on NIR fluorescence of DNA-wrapped single-walled carbon nanotubes. Chemical Physics Letters, 2007, 435, 104-108.	2.6	40
82	pH-Induced changes in electronic absorption and fluorescence spectra of phenazine derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 66, 849-859.	3.9	24
83	COMPOSITE FULLERENE MEMBRANES AND THEIR APPLICABILITY AS ELEMENTS OF VENTILATION-FILTRATION-DISINFECTION SYSTEMS. , 2007, , .		0
84	IR Spectra of Photopolymerized C60Films. Experimental and Density Functional Theory Study. Journal of Physical Chemistry B, 2006, 110, 15769-15775.	2.6	32
85	Spectroscopic and SEM studies of SWNTs: Polymer solutions and films. Carbon, 2006, 44, 1292-1297.	10.3	34
86	Hydrogen-bonded complexes of 2-aminopyrimidine–parabenzoquinone in an argon matrix. Low Temperature Physics, 2006, 32, 148-157.	0.6	3
87	Evaluation of the reduction of imidazophenazine dye derivatives under fast-atom-bombardment mass-spectrometric conditions. Journal of Mass Spectrometry, 2006, 41, 113-123.	1.6	10
88	Raman Spectroscopy and SEM Study of SWNTs in Aqueous Solution and Films with Surfactant or Polymer Surroundings. Fullerenes Nanotubes and Carbon Nanostructures, 2006, 14, 221-225.	2.1	4
89	SWNTs with DNA in Aqueous Solution and Film. AIP Conference Proceedings, 2005, , .	0.4	2
90	Mg2+ and Ni2+ ion effect on stability and structure of triple poly I·poly A·poly I helix. International Journal of Biological Macromolecules, 2005, 35, 201-210.	7.5	7

VICTOR A KARACHEVTSEV

#	Article	IF	CITATIONS
91	Absorption and fluorescent spectral studies of imidazophenazine derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2004, 60, 2005-2011.	3.9	11
92	Effective photopolymerization of C60 films under simultaneous deposition and UV light irradiation: Spectroscopy and morphology study. Carbon, 2004, 42, 2091-2098.	10.3	25
93	Noncovalent Functionalization of Single-Walled Carbon Nanotubes for Biological Application: Raman and Nir Absorption Spectroscopy. , 2004, , 139-150.		2
94	Raman spectroscopy of HiPCO single-walled carbon nanotubes at 300 and 5 K. Carbon, 2003, 41, 1567-1574.	10.3	33
95	Mg2+ ion effect on conformational equilibrium of poly Aâ€^•â€^2 poly U and poly A poly U in aqueous solutions. International Journal of Biological Macromolecules, 2003, 31, 223-233.	7.5	17
96	Combined Raman scattering and ab initio investigation of the interaction between pyrene and carbon SWNT. Molecular Physics, 2003, 101, 2609-2614.	1.7	39
97	Spectroscopy Study of SWNT in Aqueous Solution With Different Surfactants. AIP Conference Proceedings, 2003, , .	0.4	5
98	New Approach to Growth of Photopolymerized C60 Films. AIP Conference Proceedings, 2002, , .	0.4	0
99	Effect of Mg2+ Ions on the Stability of PolyA/2PolyU Three-Stranded Helices in Aqueous Solutions. Macromolecular Bioscience, 2002, 2, 155.	4.1	4
100	Dimers of phenol in argon and neon matrices. Low Temperature Physics, 2001, 27, 666-675.	0.6	19
101	Absorption and luminescence of CsMnCl3·2H2O crystals doped with Cu2+. Journal of Luminescence, 2000, 92, 35-42.	3.1	4
102	Phonon termoactivated exciton tunneling in crystals of weak charge transfer complexes N-TCPA doped with Nd8-TCPA. Chemical Physics, 1997, 216, 1-6.	1.9	4
103	Low-temperature transport of magnetic excitons in the quasi-one-dimensional antiferromagnetCsMnCl3â<2H2O doped withCu2+ions. Physical Review B, 1996, 54, 447-453.	3.2	5
104	Monte Carlo simulation of exciton trapping in quasiâ€oneâ€dimensional antiferromagnetic CsMnCl3â‹2H2O. Journal of Chemical Physics, 1995, 103, 2656-2660.	3.0	4
105	Exciton migration in quasi-one-dimensional crystals: AntiferromagneticCsMnCl3â‹2H2O. Physical Review B, 1994, 49, 11799-11807.	3.2	9
106	Unusual behaviour of the luminescence in quasi-one-dimensional antiferromagnetic crystal CsMnCl32H2O at low temperature. Solid State Communications, 1993, 87, 1027-1029.	1.9	4
107	A wide-range unit for recording luminescence decay kinetics. Journal of Applied Spectroscopy, 1993, 58, 448-453.	0.7	1
108	Temperature dependence of the phosphorescence of naphthalene-tetrachlorophthalic anhydride charge-transfer crystal complex. Journal of Applied Spectroscopy, 1987, 46, 377-380.	0.7	1

#	Article	IF	CITATIONS
109	Spectroscopic features of Pheophorbide- <i>a</i> binding to poly-L-lysine. Molecular Crystals and Liquid Crystals, 0, , 1-14.	0.9	0