Barry C Arkles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9374235/publications.pdf

Version: 2024-02-01

448610 1,313 62 19 citations h-index papers

g-index 72 72 72 1773 docs citations times ranked citing authors all docs

425179

34

#	Article	IF	Citations
1	Defect- and H-Free Stoichiometric Silicon Carbide by Thermal CVD from the Single Source Precursor Trisilacyclohexane. Electronic Materials, 2022, 3, 27-40.	0.9	6
2	Characterization and analysis of <scp>extendedâ€wear</scp> silicone hydrogel contact lenses utilizing novel silicone macromers. Journal of Biomedical Materials Research - Part A, 2022, 110, 1512-1523.	2.1	6
3	Simplified CVD route to near-zero thickness silicon nitride films. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2022, 40, 040601.	0.6	O
4	Applications of Hybrid Polymers Generated from Living Anionic Ring Opening Polymerization. Molecules, 2021, 26, 2755.	1.7	15
5	The low-temperature remote-plasma-activated pulsed chemical vapor deposition route to SiNx from 1,3,5-tri(isopropyl)cyclotrisilazane. Thin Solid Films, 2020, 711, 138299.	0.8	2
6	Single-Molecule Orthogonal Double-Click Chemistryâ€"Inorganic to Organic Nanostructure Transition. ACS Applied Materials & Samp; Interfaces, 2020, 12, 27737-27744.	4.0	4
7	Reviewâ€"Silicon Nitride and Silicon Nitride-Rich Thin Film Technologies: State-of-the-Art Processing Technologies, Properties, and Applications. ECS Journal of Solid State Science and Technology, 2020, 9, 063006.	0.9	64
8	Editors' Choiceâ€"Reviewâ€"Cobalt Thin Films: Trends in Processing Technologies and Emerging Applications. ECS Journal of Solid State Science and Technology, 2019, 8, P119-P152.	0.9	45
9	Synthesis and Exploratory Deposition Studies of Isotetrasilane and Reactive Intermediates for Epitaxial Silicon. Inorganic Chemistry, 2019, 58, 3050-3057.	1.9	5
10	Emerging Molecular and Atomic Level Techniques for Nanoscale Applications. Electrochemical Society Interface, 2018, 27, 59-63.	0.3	3
11	Surfaceâ€Triggered Tandem Coupling Reactions of Cyclic Azasilanes. Chemistry - an Asian Journal, 2017, 12, 1198-1203.	1.7	12
12	Reviewâ€"Silicon Nitride and Silicon Nitride-Rich Thin Film Technologies: Trends in Deposition Techniques and Related Applications. ECS Journal of Solid State Science and Technology, 2017, 6, P691-P714.	0.9	114
13	The Mason-Dixon Survey at 250 Years: Recent Investigations. Pennsylvania Magazine of History and Biography, 2016, 140, 83.	0.1	0
14	Thermally Induced Silane Dehydrocoupling on Silicon Nanostructures. Angewandte Chemie - International Edition, 2016, 55, 6423-6427.	7.2	28
15	Thermally Induced Silane Dehydrocoupling on Silicon Nanostructures. Angewandte Chemie, 2016, 128, 6533-6537.	1.6	13
16	Soft Materials with Recoverable Shape Factors from Extreme Distortion States. Advanced Materials, 2016, 28, 2393-2398.	11.1	37
17	Facile Surface Modification of Hydroxylated Silicon Nanostructures Using Heterocyclic Silanes. Journal of the American Chemical Society, 2016, 138, 15106-15109.	6.6	68
18	Single Molecular Layer Adaption of Interfacial Surfaces by Cyclic Azasilane "Click-Chemistry― Materials Research Society Symposia Proceedings, 2015, 1793, 35-40.	0.1	13

#	Article	IF	Citations
19	Modification of Silicone Elastomers Using Silicone Comonomers Containing Hydrophilic Surface Active Endgroups. Materials Research Society Symposia Proceedings, 2014, 1626, 1.	0.1	3
20	Thin-film Deposition of Silicon Nitrides and Oxides from Trihydridosilanes. ECS Transactions, 2014, 64, 243-249.	0.3	2
21	Dipodal Silanes: Important Tool for Surface Modification to Improve Durability. Materials Research Society Symposia Proceedings, 2014, 1648, 1.	0.1	2
22	Enhanced Hydrolytic Stability of Siliceous Surfaces Modified with Pendant Dipodal Silanes. Chemistry - A European Journal, 2014, 20, 9442-9450.	1.7	25
23	Hydroxymethylsilanetriol – A Simple Analog of Silicic Acid. Silicon, 2013, 5, 187-197.	1.8	7
24	Living Polymerization Routes to Siloxane Macromers and Higher Order Silicone Structures. ACS Symposium Series, 2013, , 59-78.	0.5	2
25	Preparation of Aromatic Silanes as High Thermal Stability Coupling Agents. Advanced Materials Research, 2013, 690-693, 1483-1489.	0.3	2
26	Hydridosilane Modification of Metals: An Exploratory Study. Journal of Adhesion Science and Technology, 2012, 26, 41-54.	1.4	5
27	Long-Chain Organofunctional Silanes: Synthesis and Surface Derivatization. Advanced Materials Research, 2011, 415-417, 1829-1836.	0.3	1
28	Hydridosilane Modification of Metals: An Exploratory Study. Advanced Materials Research, 2011, 254, 111-114.	0.3	0
29	Conformational Molecular Switches for Post-CMOS Nanoelectronics. IEEE Transactions on Circuits and Systems I: Regular Papers, 2007, 54, 2345-2352.	3.5	4
30	Cyclic azasilanes. , 2004, , 179-191.		18
31	Interlayer Mediated Epitaxy of Cobalt Silicide on Silicon (100) from Low Temperature Chemical Vapor Deposition of Cobalt Formation Mechanisms and Associated Properties. Journal of the Electrochemical Society, 2001, 148, C21.	1.3	37
32	Commercial Applications of Sol-Gel-Derived Hybrid Materials. MRS Bulletin, 2001, 26, 402-408.	1.7	103
33	Low temperature inorganic chemical vapor deposition of Ti–Si–N diffusion barrier liners for gigascale copper interconnect applications. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 2011.	1.6	21
34	Tantalum diffusion barrier grown by inorganic plasma-promoted chemical vapor deposition: Performance in copper metallization. Journal of Materials Research, 2000, 15, 2800-2810.	1.2	11
35	Low temperature plasma-assisted chemical vapor deposition of tantalum nitride from tantalum pentabromide for copper metallization. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 182.	1.6	27
36	Low temperature metal-organic chemical vapor deposition of tungsten nitride as diffusion barrier for copper metallization. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 1101.	1.6	47

#	Article	IF	CITATIONS
37	Low-temperature chemical vapor deposition of tantalum nitride from tantalum pentabromide for integrated circuitry copper metallization applications. Journal of Materials Research, 1999, 14, 2043-2052.	1.2	21
38	Tantalum Nitride Films Grown by Inorganic Low Temperature Thermal Chemical Vapor Deposition Diffusion Barrier Properties in Copper Metallization. Journal of the Electrochemical Society, 1999, 146, 170-176.	1.3	72
39	The Effects of Processing Parameters in the Chemical Vapor Deposition of Cobalt from Cobalt Tricarbonyl Nitrosyl. Journal of the Electrochemical Society, 1999, 146, 2139-2145.	1.3	50
40	Spin-on-glass thin films prepared from a novel polysilsesquioxane by thermal and ultraviolet-irradiation methods. Thin Solid Films, 1999, 345, 244-254.	0.8	11
41	Î ² -Acetoxyethyl Silsesquioxanes: Chloride-Free Precursors for SiO2 Films Via Staged Hydrolysis. Materials Research Society Symposia Proceedings, 1999, 606, 251.	0.1	2
42	The Effects of Processing Parameters in the Lowâ€Temperature Chemical Vapor Deposition of Titanium Nitride from Tetraiodotitanium. Journal of the Electrochemical Society, 1998, 145, 676-683.	1.3	10
43	Low temperature plasma-promoted chemical vapor deposition of tantalum from tantalum pentabromide for copper metallization. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 2887.	1.6	10
44	Low Temperature CVD Route to Binary and Ternary Diffusion Barrier Nitrides for Cu Metallization. Materials Research Society Symposia Proceedings, 1998, 514, 499.	0.1	0
45	Barrier Properties of Titanium Nitride Films Grown by Low Temperature Chemical Vapor Deposition from Titanium Tetraiodide. Journal of the Electrochemical Society, 1997, 144, 1002-1008.	1.3	39
46	Silicon Nitride Films Deposited by Atmospheric Pressure Chemical Vapor Deposition. Materials Research Society Symposia Proceedings, 1997, 495, 107.	0.1	2
47	Staged development of modified silicon dioxide films. Journal of Sol-Gel Science and Technology, 1997, 8, 465-469.	1.1	8
48	The Preparation of I,I-Bimetallics of Magnesium and Zinc. , 1996, , 661-672.		1
49	Factors contributing to the stability of alkoxysilanes in aqueous solution. Journal of Adhesion Science and Technology, 1992, 6, 193-206.	1.4	174
50	Efficiency of labelling of red blood cells with technetium-99m after dipyridamole infusion for thallium-201 stress testing. European Journal of Nuclear Medicine and Molecular Imaging, 1992, 19, 1050-3.	2.2	6
51	Polysiloxane—Thermoplastic Interpenetrating Polymer Networks. Advances in Chemistry Series, 1989, , 181-199.	0.6	4
52	Silacrown ionophores. Journal of Membrane Science, 1987, 32, 83-91.	4.1	3
53	Silicon Nitride from Organosilazane Cyclic and Linear Prepolymers. Journal of the Electrochemical Society, 1986, 133, 233-234.	1.3	12
54	Concerning the relative non-toxicity of silacrown ionophores. Pharmacology Biochemistry and Behavior, 1984, 21, 77-80.	1.3	7

#	Article	IF	CITATIONS
55	Silacrowns: phase-transfer catalysts. Organometallics, 1983, 2, 454-457.	1.1	20
56	Silacrowns, a New Class of Immobilizable Phase Transfer Catalysts. ACS Symposium Series, 1982, , 281-292.	0.5	2
57	[50] Functional properties of rat liver mitochondria immobilized on an alkylsilylated surface. Methods in Enzymology, 1979, 56, 550-557.	0.4	1
58	Reaction of trimethylsilyl azide with bridged bicyclic olefins. Journal of Organometallic Chemistry, 1976, 121, 285-291.	0.8	14
59	The molecular weight of PTFE wear debris. Wear, 1976, 39, 177-180.	1.5	22
60	Carbon Fiber Reinforced Thermoplastics. Product R&D, 1976, 15, 100-114.	0.3	7
61	Wear Characteristics of Fluoropolymer Composites. , 1974, , 663-688.		16
62	The Role Of Polarity In The Structure Of Silanes Employed In Surface Modification. , 0, , 51-64.		30