
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9374200/publications.pdf Version: 2024-02-01

ΔΙ ΔΝ Ι Steinadt

#	Article	IF	CITATIONS
1	Total plasma magnesium, zinc, copper and selenium concentrations in obese patients before and after bariatric surgery. BioMetals, 2023, 36, 241-253.	1.8	4
2	Exploring ICP-MS as a versatile technique: From imaging to chemical speciation analysis. Comprehensive Analytical Chemistry, 2022, , .	0.7	0
3	Albumin-mediated extracellular zinc speciation drives cellular zinc uptake. Chemical Communications, 2022, 58, 7384-7387.	2.2	5
4	The influence of HLA genotype on the development of metal hypersensitivity following joint replacement. Communications Medicine, 2022, 2, .	1.9	8
5	Organism-specific differences in the binding of ketoprofen to serum albumin. IUCrJ, 2022, 9, 551-561.	1.0	6
6	Lipidomic profiling of plasma free fatty acids in type-1 diabetes highlights specific changes in lipid metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158823.	1.2	17
7	Ablation of <i>Enpp6</i> Results in Transient Bone Hypomineralization. JBMR Plus, 2021, 5, e10439.	1.3	4
8	Pulse Dipolar EPR Reveals Double-Histidine Motif Cu ^{II} –NTA Spin-Labeling Robustness against Competitor Ions. Journal of Physical Chemistry Letters, 2021, 12, 2815-2819.	2.1	28
9	Leptin and Obesity: Role and Clinical Implication. Frontiers in Endocrinology, 2021, 12, 585887.	1.5	363
10	The Interplay between Non-Esterified Fatty Acids and Plasma Zinc and Its Influence on Thrombotic Risk in Obesity and Type 2 Diabetes. International Journal of Molecular Sciences, 2021, 22, 10140.	1.8	6
11	Prognostic features of the tumour microenvironment in oesophageal adenocarcinoma. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188598.	3.3	8
12	Albumin-mediated alteration of plasma zinc speciation by fatty acids modulates blood clotting in type-2 diabetes. Chemical Science, 2021, 12, 4079-4093.	3.7	16
13	Fatty acids may influence insulin dynamics through modulation of albuminâ€Zn ²⁺ interactions. BioEssays, 2021, 43, e2100172.	1.2	5
14	Levothyroxine Treatment and the Risk of Cardiac Arrhythmias – Focus on the Patient Submitted to Thyroid Surgery. Frontiers in Endocrinology, 2021, 12, 758043.	1.5	9
15	Atherosclerosis Linked to Aberrant Amino Acid Metabolism and Immunosuppressive Amino Acid Catabolizing Enzymes. Frontiers in Immunology, 2020, 11, 551758.	2.2	44
16	Reduced Plasma Magnesium Levels in Type-1 Diabetes Associate with Prothrombotic Changes in Fibrin Clotting and Fibrinolysis. Thrombosis and Haemostasis, 2020, 120, 243-252.	1.8	13
17	Changes in Plasma Free Fatty Acids Associated with Type-2 Diabetes. Nutrients, 2019, 11, 2022.	1.7	173
18	Total plasma magnesium, zinc, copper and selenium concentrations in type-I and type-II diabetes. BioMetals, 2019, 32, 123-138.	1.8	38

#	Article	IF	CITATIONS
19	Subâ€Micromolar Pulse Dipolar EPR Spectroscopy Reveals Increasing Cu ^{II} â€labelling of Doubleâ€Histidine Motifs with Lower Temperature. Angewandte Chemie, 2019, 131, 11807-11811.	1.6	21
20	Subâ€Micromolar Pulse Dipolar EPR Spectroscopy Reveals Increasing Cu ^{II} â€labelling of Doubleâ€Histidine Motifs with Lower Temperature. Angewandte Chemie - International Edition, 2019, 58, 11681-11685.	7.2	61
21	Quantitative proteomic changes in LPS-activated monocyte-derived dendritic cells: A SWATH-MS study. Scientific Reports, 2019, 9, 4343.	1.6	6
22	Coagulatory Defects in Type-1 and Type-2 Diabetes. International Journal of Molecular Sciences, 2019, 20, 6345.	1.8	48
23	A metalloproteomic analysis of interactions between plasma proteins and zinc: elevated fatty acid levels affect zinc distribution. Metallomics, 2019, 11, 1805-1819.	1.0	31
24	On the origin of proteins in human drusen: The meet, greet and stick hypothesis. Progress in Retinal and Eye Research, 2019, 70, 55-84.	7.3	77
25	Crosstalk between zinc and free fatty acids in plasma. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 532-542.	1.2	36
26	The X Files: "The Mystery of X Chromosome Instability in Alzheimer's Disease― Frontiers in Genetics, 2019, 10, 1368.	1.1	25
27	Glycosaminoglycan Neutralization in Coagulation Control. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1258-1270.	1.1	54
28	Erythritol Attenuates Postprandial Blood Glucose by Inhibiting α-Glucosidase. Journal of Agricultural and Food Chemistry, 2018, 66, 1401-1407.	2.4	48
29	Quantitative analysis of hydroxyapatite-binding plasma proteins in genotyped individuals with late-stage age-related macular degeneration. Experimental Eye Research, 2018, 172, 21-29.	1.2	8
30	PLA ₂ and ENPP6 may act in concert to generate phosphocholine from the matrix vesicle membrane during skeletal mineralization. FASEB Journal, 2018, 32, 20-25.	0.2	26
31	P571Role of free fatty acids in controlling plasma zinc dynamics and its effect on the aggregation properties of platelets. Cardiovascular Research, 2018, 114, S140-S140.	1.8	0
32	Influence of zinc on glycosaminoglycan neutralisation during coagulation. Metallomics, 2018, 10, 1180-1190.	1.0	11
33	Ischemia-modified albumin: Crosstalk between fatty acid and cobalt binding. Prostaglandins Leukotrienes and Essential Fatty Acids, 2018, 135, 147-157.	1.0	39
34	Native electrospray mass spectrometry approaches to probe the interaction between zinc and an anti-angiogenic peptide from histidine-rich glycoprotein. Scientific Reports, 2018, 8, 8646.	1.6	25
35	17β-Estradiol protects against the effects of a high fat diet on cardiac glucose, lipid and nitric oxide metabolism in rats. Molecular and Cellular Endocrinology, 2017, 446, 12-20.	1.6	12
36	Dysregulated Zn2+ homeostasis impairs cardiac type-2 ryanodine receptor and mitsugumin 23 functions, leading to sarcoplasmic reticulum Ca2+ leakage. Journal of Biological Chemistry, 2017, 292, 13361-13373.	1.6	19

#	Article	IF	CITATIONS
37	Changes in cardiac Na+/K+-ATPase expression and activity in female rats fed a high-fat diet. Molecular and Cellular Biochemistry, 2017, 436, 49-58.	1.4	3
38	Influence of a High-Fat Diet on Cardiac iNOS in Female Rats. Current Vascular Pharmacology, 2017, 15, 491-500.	0.8	15
39	Diastolic Calcium Leak and the Role of Zinc. Biophysical Journal, 2016, 110, 433a.	0.2	1
40	Circulatory zinc transport is controlled by distinct interdomain sites on mammalian albumins. Chemical Science, 2016, 7, 6635-6648.	3.7	67
41	Phospholipase C-η2 interacts with nuclear and cytoplasmic LIMK-1 during retinoic acid-stimulated neurite growth. Histochemistry and Cell Biology, 2016, 145, 163-173.	0.8	5
42	Response to Qian and Colvin: Zinc-mediated Regulation of the Cardiac Ryanodine Receptor Occurs via Multiple Binding Sites. Journal of Biological Chemistry, 2016, 291, 4267.	1.6	1
43	A high fat diet induces sex-specific differences in hepatic lipid metabolism and nitrite/nitrate in rats. Nitric Oxide - Biology and Chemistry, 2016, 54, 51-59.	1.2	26
44	Fatty Acid-Mediated Inhibition of Metal Binding to the Multi-Metal Site on Serum Albumin: Implications for Cardiovascular Disease. Current Topics in Medicinal Chemistry, 2016, 16, 3021-3032.	1.0	27
45	Plasma free fatty acid levels influence Zn2+â€dependent histidineâ€rich glycoprotein–heparin interactions via an allosteric switch on serum albumin. Journal of Thrombosis and Haemostasis, 2015, 13, 101-110.	1.9	38
46	The reduced Co ²⁺ â€binding ability of ischaemiaâ€modified albumin is unlikely to be because of oxidative modification of the Nâ€ŧerminus. Liver International, 2015, 35, 2622-2623.	1.9	1
47	Examining a new role for zinc in regulating calcium release in cardiac muscle. Biochemical Society Transactions, 2015, 43, 359-363.	1.6	16
48	Intracellular Zinc Modulates Cardiac Ryanodine Receptor-mediated Calcium Release. Journal of Biological Chemistry, 2015, 290, 17599-17610.	1.6	64
49	Zinc controls RyR2 activity during excitation-contraction coupling. Channels, 2015, 9, 227-229.	1.5	5
50	A Canonical EF‣oop Directs Ca ²⁺ â€Sensitivity in Phospholipase Câ€Ĥ2. Journal of Cellular Biochemistry, 2014, 115, 557-565.	1.2	12
51	In vivo effects of 17β-estradiol on cardiac Na+/K+-ATPase expression and activity in rat heart. Molecular and Cellular Endocrinology, 2014, 388, 58-68.	1.6	26
52	Crystal structure of histidine-rich glycoprotein N2 domain reveals redox activity at an interdomain disulfide bridge: implications for angiogenic regulation. Blood, 2014, 123, 1948-1955.	0.6	32
53	Albumin research in the 21st century. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 5351-5353.	1.1	31
54	Allosteric modulation of zinc speciation by fatty acids. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 5456-5464.	1.1	60

#	Article	IF	CITATIONS
55	Phospholipase Câ€∔2 is required for retinoic acidâ€stimulated neurite growth. Journal of Neurochemistry, 2013, 124, 632-644.	2.1	8
56	Effects of obesity and estradiol on Na+/K+-ATPase and their relevance to cardiovascular diseases. Journal of Endocrinology, 2013, 218, R13-R23.	1.2	27
57	Putative roles for phospholipase Cî· enzymes in neuronal Ca2+ signal modulation. Biochemical Society Transactions, 2012, 40, 282-286.	1.6	11
58	Phospholipase C-η Activity May Contribute to Alzheimer's Disease-Associated Calciumopathy. Journal of Alzheimer's Disease, 2012, 30, 737-744.	1.2	15
59	A Molecular Mechanism for Modulating Plasma Zn Speciation by Fatty Acids. Journal of the American Chemical Society, 2012, 134, 1454-1457.	6.6	48
60	Allosteric Inhibition of Cobalt Binding to Albumin by Fatty Acids: Implications for the Detection of Myocardial Ischemia. Journal of Medicinal Chemistry, 2012, 55, 4425-4430.	2.9	30
61	Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Molecular Immunology, 2012, 52, 174-182.	1.0	756
62	Regulation of pituitary inhibin/activin subunits and follistatin gene expression by GnRH in female rats. Journal of Endocrinology, 2011, 210, 71-79.	1.2	11
63	Phospholipase C-η2 is activated by elevated intracellular Ca2+ levels. Cellular Signalling, 2011, 23, 1777-1784.	1.7	27
64	GPR39: a Zn2+-activated G protein-coupled receptor that regulates pancreatic, gastrointestinal and neuronal functions. Cellular and Molecular Life Sciences, 2011, 68, 85-95.	2.4	100
65	A role for inositol monophosphatase 1 (IMPA1) in salinity adaptation in the euryhaline eel (<i>Anguilla) Tj ETQq1 1</i>	8.78431	4 _{.2} gBT /Over
66	Structure, Properties, and Engineering of the Major Zinc Binding Site on Human Albumin. Journal of Biological Chemistry, 2009, 284, 23116-23124.	1.6	122
67	Differential Expression and Functional Characterization of Luteinizing Hormone Receptor Splice Variants in Human Luteal Cells: Implications for Luteolysis. Endocrinology, 2009, 150, 2873-2881.	1.4	38
68	Plasma fatty acid levels may regulate the Zn2+-dependent activities of histidine-rich glycoprotein. Biochimie, 2009, 91, 1518-1522.	1.3	21
69	Retention and Silencing of Prepro-GnRH-II and Type II GnRH Receptor Genes in Mammals. Neuroendocrinology, 2009, 90, 416-432.	1.2	58
70	Antiproliferative Effects of GnRH Agonists: Prospects and Problems for Cancer Therapy. Neuroendocrinology, 2008, 88, 67-79.	1.2	29
71	Gonadotropin-Releasing Hormone Receptor Levels and Cell Context Affect Tumor Cell Responses to Agonist <i>In vitro</i> and <i>In vivo</i> . Cancer Research, 2008, 68, 6331-6340.	0.4	42
72	Identification of a Novel Ligand Binding Residue Arg38(1.35) in the Human Gonadotropin-Releasing Hormone Receptor. Molecular Pharmacology, 2008, 73, 75-81.	1.0	16

ALAN J STEWART

#	Article	lF	CITATIONS
73	Albumin as a zinc carrier: properties of its high-affinity zinc-binding site. Biochemical Society Transactions, 2008, 36, 1317-1321.	1.6	203
74	Phospholipase C-eta Enzymes as Putative Protein Kinase C and Ca ²⁺ Signalling Components in Neuronal and Neuroendocrine Tissues. Neuroendocrinology, 2007, 86, 243-248.	1.2	50
75	The presence of PHOSPHO1 in matrix vesicles and its developmental expression prior to skeletal mineralization. Bone, 2006, 39, 1000-1007.	1.4	79
76	Elevated expression of hypoxia inducible factor-2α in terminally differentiating growth plate chondrocytes. Journal of Cellular Physiology, 2006, 206, 435-440.	2.0	34
77	Probing the substrate specificities of human PHOSPHO1 and PHOSPHO2. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1752, 73-82.	1.1	32
78	Role of Tyr84 in controlling the reactivity of Cys34 of human albumin. FEBS Journal, 2005, 272, 353-362.	2.2	97
79	Identification of a novel class of mammalian phosphoinositol-specific phospholipase C enzymes. International Journal of Molecular Medicine, 2005, 15, 117.	1.8	9
80	Identification of a novel class of mammalian phosphoinositol-specific phospholipase C enzymes. International Journal of Molecular Medicine, 2005, 15, 117-21.	1.8	38
81	PHOSPHO1—A novel phosphatase specifically expressed at sites of mineralisation in bone and cartilage. Bone, 2004, 34, 629-637.	1.4	89
82	Human PHOSPHO1 exhibits high specific phosphoethanolamine and phosphocholine phosphatase activities. Biochemical Journal, 2004, 382, 59-65.	1.7	111
83	Comparative modelling of human PHOSPHO1 reveals a new group of phosphatases within the haloacid dehalogenase superfamily. Protein Engineering, Design and Selection, 2003, 16, 889-895.	1.0	42
84	Interdomain zinc site on human albumin. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3701-3706.	3.3	167