Lei Jiang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9373981/lei-jiang-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

93,463 1,262 146 258 h-index g-index citations papers 12.8 8.78 107,848 1,368 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
1262	Electrochemical ion-pumping-assisted transfer system featuring a heterogeneous membrane for lithium recovery. <i>Chemical Engineering Journal</i> , 2022 , 435, 134955	14.7	3
1261	Kinetics-Regulated Interfacial Selective Superassembly of Asymmetric Smart Nanovehicles with Tailored Topological Hollow Architectures <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	4
1260	Super-assembly of freestanding graphene oxide-aramid fiber membrane with T-mode subnanochannels for sensitive ion transport <i>Analyst, The</i> , 2022 ,	5	2
1259	Ultrasensitive Photodetectors Based on Strongly Interacted Layered-Perovskite Nanowires <i>ACS Applied Materials & District Materials &</i>	9.5	1
1258	Self-assembly of Colloidal Crystals: Strategies 2022 , 109-137		
1257	Magnetic Domain Confined Printing of Programmable Organic Microcrystal Assemblies for Information Encryption <i>Advanced Materials</i> , 2022 , e2108279	24	3
1256	Multiscale engineered artificial tooth enamel <i>Science</i> , 2022 , 375, 551-556	33.3	19
1255	Electrochemical reduction of nitrate in a catalytic carbon membrane nano-reactor. <i>Water Research</i> , 2022 , 208, 117862	12.5	1
1254	The synergistic effect of space and surface charge on nanoconfined ion transport and nanofluidic energy harvesting. <i>Nano Energy</i> , 2022 , 92, 106709	17.1	1
1253	Chiral 1D perovskite microwire arrays for circularly polarized light detection. <i>Giant</i> , 2022 , 9, 100086	5.6	3
1252	Dynamically modulated gating process of nanoporous membrane at sub-2-nm speed. <i>Matter</i> , 2022 , 5, 281-290	12.7	1
1251	Enhanced photo-driven ion pump through silver nanoparticles decorated graphene oxide membranes. <i>Nano Research</i> , 2022 , 15, 612	10	1
1250	Angstrom-scale ion channels towards single-ion selectivity Chemical Society Reviews, 2022,	58.5	11
1249	Biomimetic Nanochannels: From Fabrication Principles to Theoretical Insights <i>Small Methods</i> , 2022 , e2101255	12.8	3
1248	Interfacial Superassembly of Mesoporous Titania Nanopillar-Arrays/Alumina Oxide Heterochannels for Light- and pH-Responsive Smart Ion Transport <i>ACS Central Science</i> , 2022 , 8, 361-369	16.8	2
1247	Robust Underwater Air Layer Retention and Restoration on -Inspired Self-Grown Heterogeneous Architectures <i>ACS Nano</i> , 2022 ,	16.7	3
1246	WET-Induced Layered Organohydrogel as Bioinspired "Sticky-Slippy Skin" for Robust Underwater Oil-Repellency <i>Advanced Materials</i> , 2022 , e2110408	24	2

1245	Construction of Graphene-Based "In-Paper" 3D Interdigital Microelectrodes for High Performance Metal-Free Flexible Supercapacitors <i>Small Methods</i> , 2022 , e2101454	12.8	О	
1244	Construction of Free-Standing MOF Sheets through Electrochemical Printing on Superhydrophobic Substrates 2022 , 4, 609-617		О	
1243	Biomimetic KcsA channels with ultra-selective K transport for monovalent ion sieving <i>Nature Communications</i> , 2022 , 13, 1701	17.4	4	
1242	Reliable and Low Temperature Actuation of Water and Oil Slugs in Janus Photothermal Slippery Tube ACS Applied Materials & amp; Interfaces, 2022,	9.5	3	
1241	Ultrafast rectifying counter-directional transport of proton and metal ions in metal-organic framework-based nanochannels <i>Science Advances</i> , 2022 , 8, eabl5070	14.3	9	
1240	Superassembled Hierarchical Asymmetric Magnetic Mesoporous Nanorobots Driven by Smart Confined Catalytic Degradation <i>Chemistry - A European Journal</i> , 2022 , e202200307	4.8	О	
1239	Miscible organic liquid separation of superwetting membrane driven by synergistic polar/nonpolar interactions. <i>Matter</i> , 2022 , 5, 1251-1262	12.7	2	
1238	Superassembly of Surface-Enriched Ru Nanoclusters from Trapping-Bonding Strategy for Efficient Hydrogen Evolution <i>ACS Nano</i> , 2022 ,	16.7	4	
1237	Bioinspired poly (ionic liquid) membrane for efficient salinity gradient energy harvesting: Electrostatic crosslinking induced hierarchical nanoporous network. <i>Nano Energy</i> , 2022 , 97, 107170	17.1	1	
1236	Lead-Free Chiral 2D Double Perovskite Microwire Arrays for Circularly Polarized Light Detection. <i>Advanced Optical Materials</i> , 2022 , 10, 2102227	8.1	1	
1235	Controlling Directional Liquid Transport on Dual Cylindrical Fibers with Oriented Open-Wedges. <i>Advanced Materials Interfaces</i> , 2022 , 9, 2101749	4.6	2	
1234	Electrochemical On-site Switching the Directional Liquid Transport on the Conical Fiber <i>Advanced Materials</i> , 2022 , e2200759	24	2	
1233	Deterministic Assembly of Colloidal Quantum Dots for Multifunctional Integrated Photonics <i>Advanced Materials</i> , 2022 , e2110695	24		
1232	Confined Assembly of Colloidal Nanorod Superstructures by Locally Controlling Free-volume Entropy in Non-equilibrium Fluids <i>Advanced Materials</i> , 2022 , e2202119	24	1	
1231	Electric field modulated water permeation through laminar Ti3C2Tx MXene membrane. <i>Water Research</i> , 2022 , 118598	12.5	1	
1230	Superassembled Hierarchical Asymmetric Magnetic Mesoporous Nanorobots Driven by Smart Confined Catalytic Degradation <i>Chemistry - A European Journal</i> , 2022 , 28, e202201278	4.8		
1229	Long-Range-Ordered Assembly of Micro-/Nanostructrues at Superwetting Interfaces <i>Advanced Materials</i> , 2021 , e2106857	24	8	
1228	Single-, Dual-, Triple, and Quad-wavelength Surface-emitting Lasing in Blue Phase Liquid Crystal <i>Advanced Materials</i> , 2021 , e2108330	24	5	

1227	Unconventional Dual Ion Selectivity Determined by the Forward Side of a Bipolar Channel toward Ion Flux ACS Applied Materials & Interfaces, 2021,	9.5	1
1226	Ionic Crosslinking-Induced Nanochannels: Nanophase Separation for Ion Transport Promotion. <i>Advanced Materials</i> , 2021 , e2108410	24	7
1225	Photothermal slippery surface showing rapid self-repairing and exceptional anti-icing/deicing property. <i>Chemical Engineering Journal</i> , 2021 , 431, 133411	14.7	5
1224	Eco-friendly perforated kelp membrane with high strength for efficient oil/water separation in a complex environment. <i>Separation and Purification Technology</i> , 2021 , 120114	8.3	3
1223	Recent progress in PNIPAM-based multi-responsive actuators: A mini-review. <i>Chemical Engineering Journal</i> , 2021 , 433, 133496	14.7	5
1222	Tunning Intermolecular Interaction of Peptide-Conjugated AIEgen in Nano-Confined Space for Quantitative Detection of Tumor Marker Secreted from Cells. <i>Analytical Chemistry</i> , 2021 , 93, 16257-162	6 38	3
1221	Liquid-Assisted Single-Layer Janus Membrane for Efficient Unidirectional Liquid Penetration. <i>Advanced Science</i> , 2021 , e2103765	13.6	3
1220	Stretch-Enhanced Anisotropic Wetting on Transparent Elastomer Film for Controlled Liquid Transport. <i>ACS Nano</i> , 2021 ,	16.7	3
1219	Controlled Assembly of Conjugated Ladder Molecules with Different Bridging Structures toward Optoelectronic Application. <i>ACS Applied Materials & Different Bridging Structures toward Materials & Different Bridging Structures toward Optoelectronic Application. ACS Applied Materials & Different Bridging Structures toward Optoelectronic Application. <i>ACS Applied Materials & Different Bridging Structures toward Optoelectronic Application (Control of Control of C</i></i>	9.5	О
1218	Interfacial Super-Assembly of Ordered Mesoporous Carbon-Silica/AAO Hybrid Membrane with Enhanced Permselectivity for Temperature- and pH-Sensitive Smart Ion Transport. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26167-26176	16.4	15
1217	Rational ion transport management mediated through membrane structures. <i>Exploration</i> , 2021 , 1, 2021	0101	9
1216	Two-Dimensional Nanofluidic Membranes toward Harvesting Salinity Gradient Power. <i>Accounts of Chemical Research</i> , 2021 , 54, 4154-4165	24.3	8
1215	Titanium Dioxide Derived Materials with Superwettability. <i>Catalysts</i> , 2021 , 11, 425	4	2
1214	Free-Standing Covalent Organic Framework Membrane for High-Efficiency Salinity Gradient Energy Conversion. <i>Angewandte Chemie</i> , 2021 , 133, 10013-10018	3.6	10
1213	Harnessing Ionic Power from Equilibrium Electrolyte Solution via Photoinduced Active Ion Transport through van-der-Waals-Like Heterostructures. <i>Advanced Materials</i> , 2021 , 33, e2007529	24	5
1212	Inkless Rewritable Photonic Crystals Paper Enabled by a Light-Driven Azobenzene Mesogen Switch. <i>ACS Applied Materials & Driven State (Materials & Driven State)</i> 13, 12383-12392	9.5	10
1211	Aggregation-Induced Emission Molecule Microwire-Based Specific Organic Vapor Detector through Structural Modification. <i>ACS Applied Materials & Structural Modification</i> (13, 12501-12508)	9.5	3
1210	Over 14% Efficiency Single-Junction Organic Solar Cells Enabled by Reasonable Conformation Modulating in Naphtho[2,3-b:6,7-b?]difuran Based Polymer. <i>Advanced Energy Materials</i> , 2021 , 11, 20039	2 4.8	13

1209	A Spider-Silk-Inspired Wet Adhesive with Supercold Tolerance. <i>Advanced Materials</i> , 2021 , 33, e2007301	24	24	
1208	Ionic Transport and Robust Switching Properties of the Confined Self-Assembled Block Copolymer/Homopolymer in Asymmetric Nanochannels. <i>ACS Applied Materials & Distriction</i> , 11, 14507-14517	9.5	4	
1207	A shape memory porous sponge with tunability in both surface wettability and pore size for smart molecule release. <i>Science China Materials</i> , 2021 , 64, 2337-2347	7.1	3	
1206	Interfacial Super-Assembly of T-Mode Janus Porous Heterochannels from Layered Graphene and Aluminum Oxide Array for Smart Oriented Ion Transportation. <i>Small</i> , 2021 , 17, e2100141	11	8	
1205	Free-Standing Covalent Organic Framework Membrane for High-Efficiency Salinity Gradient Energy Conversion. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 9925-9930	16.4	28	
1204	Manipulating Dispersions of Magnetic Nanoparticles. <i>Nano Letters</i> , 2021 , 21, 2699-2708	11.5	6	
1203	Microchannel and Nanofiber Array Morphology Enhanced Rapid Superspreading on Animals' Corneas. <i>Advanced Materials</i> , 2021 , 33, e2007152	24	8	
1202	Super-spreading on superamphiphilic micro-organized nanochannel anodic aluminum oxide surfaces for heat dissipation. <i>IScience</i> , 2021 , 24, 102334	6.1	8	
1201	Enhanced Organic Photocatalysis in Confined Flow through a Carbon Nitride Nanotube Membrane with Conversions in the Millisecond Regime. <i>ACS Nano</i> , 2021 , 15, 6551-6561	16.7	13	
1200	Sequential Superassembly of Nanofiber Arrays to Carbonaceous Ordered Mesoporous Nanowires and Their Heterostructure Membranes for Osmotic Energy Conversion. <i>Journal of the American Chemical Society</i> , 2021 , 143, 6922-6932	16.4	15	
1199	Nanofluidics for osmotic energy conversion. <i>Nature Reviews Materials</i> , 2021 , 6, 622-639	73.3	57	
1198	Nano/submicrometer-emulsion oily wastewater treatment inspired by plant transpiration. <i>Matter</i> , 2021 , 4, 1274-1286	12.7	19	
1197	Spontaneous Directional Self-Cleaning on the Feathers of the Aquatic Bird Anser cygnoides domesticus Induced by a Transient Superhydrophilicity. <i>Advanced Functional Materials</i> , 2021 , 31, 201063	3 4 5.6	5	
1196	Scalable Single-Crystalline Organic 1D Arrays for Image Sensor. <i>Small</i> , 2021 , 17, e2100332	11	6	
1195	Light-Induced Heat Driving Active Ion Transport Based on 2D MXene Nanofluids for Enhancing Osmotic Energy Conversion. <i>CCS Chemistry</i> , 2021 , 3, 1325-1335	7.2	11	
1194	Bioinspired Color Switchable Photonic Crystal Silicone Elastomer Kirigami. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 14307-14312	16.4	22	
1193	Superamphiphilic TiO Composite Surface for Protein Antifouling. Advanced Materials, 2021, 33, e200355	5 9 4	11	
1192	Bioinspired Color Switchable Photonic Crystal Silicone Elastomer Kirigami. <i>Angewandte Chemie</i> , 2021 , 133, 14428-14433	3.6	1	

1191	Large-scale, robust mushroom-shaped nanochannel array membrane for ultrahigh osmotic energy conversion. <i>Science Advances</i> , 2021 , 7,	14.3	12
1190	Chiral 2D-Perovskite Nanowires for Stokes Photodetectors. <i>Journal of the American Chemical Society</i> , 2021 , 143, 8437-8445	16.4	29
1189	The macroscopic quantum state of ion channels: A carrier of neural information. <i>Science China Materials</i> , 2021 , 64, 2572-2579	7.1	4
1188	Titelbild: Bioinspired Color Switchable Photonic Crystal Silicone Elastomer Kirigami (Angew. Chem. 26/2021). <i>Angewandte Chemie</i> , 2021 , 133, 14317-14317	3.6	
1187	Fluorinated Metal-Organic Coatings with Selective Wettability. <i>Journal of the American Chemical Society</i> , 2021 , 143, 9972-9981	16.4	7
1186	Integrated Bundle Electrode with Wettability-Gradient Copper Cones Inducing Continuous Generation, Directional Transport, and Efficient Collection of H Bubbles. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 32435-32441	9.5	9
1185	Abnormal Properties of Low-Dimensional Confined Water. Small, 2021, 17, e2100788	11	9
1184	Diffusionless transformation of soft cubic superstructure from amorphous to simple cubic and body-centered cubic phases. <i>Nature Communications</i> , 2021 , 12, 3477	17.4	9
1183	Long-Term Super-Amphiphilic Shaped-Fiber with Multi-Scale Grooved Structures: Toward Spontaneous Self-Cleaning. <i>Advanced Functional Materials</i> , 2021 , 31, 2102877	15.6	3
1182	Surface Charge Regulated Asymmetric Ion Transport in Nanoconfined Space. <i>Small</i> , 2021 , 17, e2101099	11	6
1181	Biocompatible Materials: Microchannel and Nanofiber Array Morphology Enhanced Rapid Superspreading on AnimalslCorneas (Adv. Mater. 23/2021). <i>Advanced Materials</i> , 2021 , 33, 2170180	24	
1180	Unidirectional ion transport in nanoporous carbon membranes with a hierarchical pore architecture. <i>Nature Communications</i> , 2021 , 12, 4650	17.4	5
1179	Superhydrophobic-Substrate-Assisted Construction of Free-Standing Microcavity-Patterned Conducting Polymer Films. <i>Advanced Science</i> , 2021 , 8, e2100949	13.6	6
1178	Thermoenhanced osmotic power generator via lithium bromide and asymmetric sulfonated poly(ether ether ketone)/poly(ether sulfone) nanofluidic membrane. NPG Asia Materials, 2021, 13,	10.3	7
1177	Hydrophobic ionic liquid tuning hydrophobic carbon to superamphiphilicity for reducing diffusion resistance in liquid-liquid catalysis systems. <i>CheM</i> , 2021 , 7, 1852-1869	16.2	5
1176	Ion transport regulation through triblock copolymer/PET asymmetric nanochannel membrane: Model system establishment and rectification mapping. <i>Chinese Chemical Letters</i> , 2021 , 32, 822-825	8.1	16
1175	Demonstration of biophoton-driven DNA replication via gold nanoparticle-distance modulated yield oscillation. <i>Nano Research</i> , 2021 , 14, 40-45	10	13
1174	Bio-based hydroxymethylated eugenol modified bismaleimide resin and its high-temperature composites. <i>Journal of Applied Polymer Science</i> , 2021 , 138, 49631	2.9	7

(2021-2021)

1173	Decoupling hydrogen production from water oxidation by integrating a triphase interfacial bioelectrochemical cascade reaction. <i>Science Bulletin</i> , 2021 , 66, 164-169	10.6	4
1172	Crystal face dependent intrinsic wettability of metal oxide surfaces. <i>National Science Review</i> , 2021 , 8, nwaa166	10.8	14
1171	Euryhaline Hydrogel with Constant Swelling and Salinity-Enhanced Mechanical Strength in a Wide Salinity Range. <i>Advanced Functional Materials</i> , 2021 , 31, 2007664	15.6	14
1170	Superwetting Shape Memory Microstructure: Smart Wetting Control and Practical Application. <i>Advanced Materials</i> , 2021 , 33, e2001718	24	38
1169	Anti-vapor-penetration and condensate microdrop self-transport of superhydrophobic oblique nanowire surface under high subcooling. <i>Nano Research</i> , 2021 , 14, 1429-1434	10	12
1168	A universal functionalization strategy for biomimetic nanochannel via external electric field assisted non-covalent interaction. <i>Nano Research</i> , 2021 , 14, 1421-1428	10	9
1167	Control the Entire Journey of Pesticide Application on Superhydrophobic Plant Surface by Dynamic Covalent Trimeric Surfactant Coacervation. <i>Advanced Functional Materials</i> , 2021 , 31, 2006606	15.6	25
1166	Metal organic framework enhanced SPEEK/SPSF heterogeneous membrane for ion transport and energy conversion. <i>Nano Energy</i> , 2021 , 81, 105657	17.1	7
1165	Engineered Sulfonated Polyether Sulfone Nanochannel Membranes for Salinity Gradient Power Generation. <i>ACS Applied Polymer Materials</i> , 2021 , 3, 485-493	4.3	6
1164	Ultraselective Monovalent Metal Ion Conduction in a Three-Dimensional Sub-1 nm Nanofluidic Device Constructed by Metal-Organic Frameworks. <i>ACS Nano</i> , 2021 , 15, 1240-1249	16.7	13
1163	Enhancement of interfacial catalysis in a triphase reactor using oxygen nanocarriers. <i>Nano Research</i> , 2021 , 14, 172-176	10	6
1162	Light-driven directional ion transport for enhanced osmotic energy harvesting. <i>National Science Review</i> , 2021 , 8, nwaa231	10.8	6
1161	Bioinspired Surface with Superwettability for Controllable Liquid Dynamics. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2000824	4.6	12
1160	Asymmetric and hierarchical porous carbon membranes prepared by a single-step soft-templated method. <i>Chemical Engineering Communications</i> , 2021 , 208, 166-170	2.2	
1159	Interfacial-Potential-Gradient Induced a Significant Enhancement of Photoelectric Conversion: Thiophene Polyelectrolyte (PTE-BS) and Bipyridine Ruthenium (N3) Cooperative Regulated Biomimetic Nanochannels. <i>Advanced Energy Materials</i> , 2021 , 11, 2003340	21.8	3
1158	Biomimetic caged platinum catalyst for hydrosilylation reaction with high site selectivity. <i>Nature Communications</i> , 2021 , 12, 64	17.4	7
1157	Solution processed 1D polymer/SWCNT composite arrays for high-performance field effect transistors. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 6597-6604	7.1	
1156	Metallic Two-Dimensional MoS Composites as High-Performance Osmotic Energy Conversion Membranes. <i>Journal of the American Chemical Society</i> , 2021 , 143, 1932-1940	16.4	39

1155	Modulation of solid surface with desirable under-liquid wettability based on molecular hydrophilic-lipophilic balance. <i>Chemical Science</i> , 2021 , 12, 6136-6142	9.4	4
1154	Photothermal slippery surfaces towards spatial droplet manipulation. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 16974-16981	13	5
1153	Bioinspired Cavity Regulation on Superhydrophobic Spheres for Drag Reduction in an Aqueous Medium. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 4796-4803	9.5	10
1152	Multi-solvent large stopband monitoring based on the insolubility/superoleophilicity of PEDOT inverse opals. <i>Nanoscale Advances</i> , 2021 , 3, 4519-4527	5.1	1
1151	Underwater Gas Manipulation: Designing Flexible but Tough Slippery Track for Underwater Gas Manipulation (Small 8/2021). <i>Small</i> , 2021 , 17, 2170035	11	
1150	High-strength scalable graphene sheets by freezing stretch-induced alignment. <i>Nature Materials</i> , 2021 , 20, 624-631	27	42
1149	Dual-responsive shape memory polymer arrays with smart and precise multiple-wetting controllability. <i>Science China Materials</i> , 2021 , 64, 1801-1812	7.1	6
1148	Interfacial Super-Assembly of Ordered Mesoporous Silica-Alumina Heterostructure Membranes with pH-Sensitive Properties for Osmotic Energy Harvesting. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 8782-8793	9.5	16
1147	Bioinspired Two-Dimensional Structure with Asymmetric Wettability Barriers for Unidirectional and Long-Distance Gas Bubble Delivery Underwater. <i>Nano Letters</i> , 2021 , 21, 2117-2123	11.5	20
1146	Nacre-like Mechanically Robust Heterojunction for Lithium-Ion Extraction. <i>Matter</i> , 2021 , 4, 737-754	12.7	24
1145	The quantized chemical reaction resonantly driven by multiple MIR-photons: From nature to the artificial. <i>Nano Research</i> , 2021 , 14, 4367	10	4
1144	Large-Scale, Ultrastrong Cu2+ Cross-Linked Sodium Alginate Membrane for Effective Salinity Gradient Power Conversion. <i>ACS Applied Polymer Materials</i> , 2021 , 3, 3902-3910	4.3	6
1143	Stiff and tough PDMS-MMT layered nanocomposites visualized by AIE luminogens. <i>Nature Communications</i> , 2021 , 12, 4539	17.4	17
1142	Driving Force of Molecular/Ionic Superfluid Formation. <i>CCS Chemistry</i> , 2021 , 3, 1258-1266	7.2	4
1141	Direct-Writing Large-Area Cross-Aligned Ag Nanowires Network: Toward High-Performance Transparent Quantum Dot Light-Emitting Diodes. <i>CCS Chemistry</i> , 2021 , 3, 2194-2202	7.2	4
1140	Solar-driven high-efficiency remediation of wastewater containing small dye molecules. <i>Science China Technological Sciences</i> , 2021 , 64, 2237	3.5	2
1139	Abnormal Properties of Low-Dimensional Confined Water (Small 31/2021). Small, 2021, 17, 2170163	11	1
1138	Anti-Swelling Gradient Polyelectrolyte Hydrogel Membranes as High-Performance Osmotic Energy Generators. <i>Angewandte Chemie</i> , 2021 , 133, 20456-20462	3.6	1

(2021-2021)

1137	Reduction in Aqueous Media: Macrogeometry Vanquishing Wettability. <i>ACS Applied Materials</i> & amp; Interfaces, 2021 , 13, 38808-38815	9.5	1
1136	Optical and electrical modulation in ultraviolet photodetectors based on organic one-dimensional photochromic arrays. <i>SmartMat</i> , 2021 , 2, 388-397	22.8	7
1135	Biomimetic Nanocomposite Membranes with Ultrahigh Ion Selectivity for Osmotic Power Conversion. <i>ACS Central Science</i> , 2021 , 7, 1486-1492	16.8	13
1134	Layered Metal-Halide Perovskite Single-Crystalline Microwire Arrays for Anisotropic Nonlinear Optics. <i>Advanced Functional Materials</i> , 2021 , 31, 2105855	15.6	3
1133	Rewritable PEDOT Film Based on Water-Writing and Electroerasing. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2021 , 13, 41220-41230	9.5	5
1132	Anti-Swelling Gradient Polyelectrolyte Hydrogel Membranes as High-Performance Osmotic Energy Generators. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 20294-20300	16.4	15
1131	Flexible Hard Coatings with Self-Evolution Behavior in a Low Earth Orbit Environment. <i>ACS Applied Materials & ACS Applied & ACS App</i>	9.5	1
1130	Serosa-Mimetic Nanoarchitecture Membranes for Highly Efficient Osmotic Energy Generation. Journal of the American Chemical Society, 2021 , 143, 16206-16216	16.4	14
1129	Superhydrophobic coating modified nozzles for energy-saving rapid micro-mixing. <i>Chemical Engineering Journal</i> , 2021 , 419, 129766	14.7	1
1128	Marine antifouling coatings with surface topographies triggered by phase segregation. <i>Journal of Colloid and Interface Science</i> , 2021 , 598, 104-112	9.3	7
1127	Highly Efficient Multiscale Fog Collector Inspired by Sarracenia Trichome Hierarchical Structure <i>Global Challenges</i> , 2021 , 5, 2100087	4.3	3
1126	High-strength scalable MXene films through bridging-induced densification. <i>Science</i> , 2021 , 374, 96-99	33.3	64
1125	Preparation of intrinsic flexible conductive PEDOT:PSS@ionogel composite film and its application for touch panel. <i>Chemical Engineering Journal</i> , 2021 , 425, 131542	14.7	4
1124	Designing Flexible but Tough Slippery Track for Underwater Gas Manipulation. <i>Small</i> , 2021 , 17, e200780) 3 1	13
1123	Hierarchical Interface Engineering for Advanced Nanocellulosic Hybrid Aerogels with High Compressibility and Multifunctionality. <i>Advanced Functional Materials</i> , 2021 , 31, 2009349	15.6	28
1122	Research Progress of Bioinspired Photonic Crystal Fibers. <i>Acta Chimica Sinica</i> , 2021 , 79, 414	3.3	
1121	The Meniscus-assisted-coating with Optimized Active Layer Morphology towards Highly Efficient All-polymer Solar Cells <i>Advanced Materials</i> , 2021 , e2108508	24	4
1120	Wafer-scale integration of stretchable semiconducting polymer microstructures via capillary gradient. <i>Nature Communications</i> , 2021 , 12, 7038	17.4	4

1119	Photoresponsive Styrylpyrene-Modified MOFs for Gated Loading and Release of Cargo Molecules. <i>Chemistry of Materials</i> , 2020 , 32, 10621-10627	9.6	7
1118	A fast adaptive gating system based on the reconfigurable morphology of liquid metal via an electric field on porous surfaces. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 24184-24191	13	3
1117	Metal©rganic Framework Membrane Nanopores as Biomimetic Photoresponsive Ion Channels and Photodriven Ion Pumps. <i>Angewandte Chemie</i> , 2020 , 132, 12895-12899	3.6	4
1116	Unidirectional and Selective Proton Transport in Artificial Heterostructured Nanochannels with Nano-to-Subnano Confined Water Clusters. <i>Advanced Materials</i> , 2020 , 32, e2001777	24	32
1115	Hydrophilic/Hydrophobic Heterogeneity Anti-Biofouling Hydrogels with Well-Regulated Rehydration. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 25316-25323	9.5	25
1114	Regulating Droplet Dynamic Wetting Behaviors Using Surfactant Additives on High-Temperature Surfaces. <i>Advanced Materials Interfaces</i> , 2020 , 7, 2000501	4.6	3
1113	Highly Flexible Monolayered Porous Membrane with Superhydrophilicity-Hydrophilicity for Unidirectional Liquid Penetration. <i>ACS Nano</i> , 2020 , 14, 7287-7296	16.7	44
1112	Effect of Anion Species on Ion Current Rectification Properties of Positively Charged Nanochannels. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 28915-28922	9.5	11
1111	Laterally Heterogeneous 2D Layered Materials as an Artificial Light-Harvesting Proton Pump. <i>Advanced Functional Materials</i> , 2020 , 30, 2001549	15.6	6
1110	High Performance Bubble Manipulation on Ferrofluid-Infused Laser-Ablated Microstructured Surfaces. <i>Nano Letters</i> , 2020 , 20, 5513-5521	11.5	32
1109	Efficient wettability-controlled electroreduction of CO to CO at Au/C interfaces. <i>Nature Communications</i> , 2020 , 11, 3028	17.4	119
1108	Photoassisted salt-concentration-biased electricity generation using cation-selective porphyrin-based nanochannels membrane. <i>Nano Energy</i> , 2020 , 76, 105086	17.1	11
1107	Tailoring A Poly(ether sulfone) Bipolar Membrane: Osmotic-Energy Generator with High Power Density. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 17423-17428	16.4	24
1106	Bioinspired hydrogel-based nanofluidic ionic diodes: nano-confined network tuning and ion transport regulation. <i>Chemical Communications</i> , 2020 , 56, 8123-8126	5.8	7
1105	Bioinspired Ionic Sensory Systems: The Successor of Electronics. <i>Advanced Materials</i> , 2020 , 32, e200021	824	35
1104	Ultrathin 2D Graphitic Carbon Nitride on Metal Films: Underpotential Sodium Deposition in Adlayers for Sodium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9067-9073	16.4	37
1103	Ultrafast Self-Propelled Directional Liquid Transport on the Pyramid-Structured Fibers with Concave Curved Surfaces. <i>Journal of the American Chemical Society</i> , 2020 , 142, 6111-6116	16.4	23
1102	Efficient metal ion sieving in rectifying subnanochannels enabled by metal-organic frameworks. Nature Materials, 2020, 19, 767-774	27	120

(2020-2020)

1101	Integration of Metal Single Atoms on Hierarchical Porous Nitrogen-Doped Carbon for Highly Efficient Hydrogenation of Large-Sized Molecules in the Pharmaceutical Industry. <i>ACS Applied Materials & Ma</i>	9.5	17	
1100	Neutralization Reaction Assisted Chemical-Potential-Driven Ion Transport through Layered Titanium Carbides Membrane for Energy Harvesting. <i>Nano Letters</i> , 2020 , 20, 3593-3601	11.5	33	
1099	Ultrathin 2D Graphitic Carbon Nitride on Metal Films: Underpotential Sodium Deposition in Adlayers for Sodium-Ion Batteries. <i>Angewandte Chemie</i> , 2020 , 132, 9152-9158	3.6	1	
1098	A Multi-Bioinspired Dual-Gradient Electrode for Microbubble Manipulation toward Controllable Water Splitting. <i>Advanced Materials</i> , 2020 , 32, e1908099	24	35	
1097	Near-Infrared Organic Single-Crystal Nanolaser Arrays Activated by Excited-State Intramolecular Proton Transfer. <i>Matter</i> , 2020 , 2, 1233-1243	12.7	40	
1096	Tailoring A Poly(ether sulfone) Bipolar Membrane: Osmotic-Energy Generator with High Power Density. <i>Angewandte Chemie</i> , 2020 , 132, 17576-17581	3.6	4	
1095	Bioinspired nervous signal transmission system based on two-dimensional laminar nanofluidics: From electronics to ionics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 16743-16748	11.5	12	
1094	Droplets Crawling on Peristome-Mimetic Surfaces. <i>Advanced Functional Materials</i> , 2020 , 30, 1908066	15.6	6	
1093	Hydrogel-Coated Dental Device with Adhesion-Inhibiting and Colony-Suppressing Properties. <i>ACS Applied Materials & Device Materials & Device With Adhesion-Inhibiting and Colony-Suppressing Properties. ACS Applied Materials & Device With Adhesion-Inhibiting and Colony-Suppressing Properties. <i>ACS Applied Materials & Device With Adhesion-Inhibiting and Colony-Suppressing Properties. ACS Applied Materials & Device With Adhesion-Inhibiting and Colony-Suppressing Properties. <i>ACS Applied Materials & Device With Adhesion-Inhibiting and Colony-Suppressing Properties. ACS Applied Materials & Device With Adhesion-Inhibiting and Colony-Suppressing Properties. <i>ACS Applied Materials & Device With Adhesion Materials & Device With M</i></i></i></i>	9.5	24	
1092	Air-Stable Highly Crystalline Formamidinium Perovskite 1D Structures for Ultrasensitive Photodetectors. <i>Advanced Functional Materials</i> , 2020 , 30, 1908894	15.6	14	
1091	A bioinspired magnetic responsive cilia array surface for microspheres underwater directional transport. <i>Science China Chemistry</i> , 2020 , 63, 347-353	7.9	5	
1090	Electric-Field-Induced Ionic Sieving at Planar Graphene Oxide Heterojunctions for Miniaturized Water Desalination. <i>Advanced Materials</i> , 2020 , 32, e1903954	24	34	
1089	Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. <i>Nature Communications</i> , 2020 , 11, 875	17.4	71	
1088	Apex structures enhance water drainage on leaves. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 1890-1894	11.5	14	
1087	Organic Functional Molecule-Based Single-Crystalline Nanowires for Optical Waveguides and Their Patterned Crystals. <i>Advanced Optical Materials</i> , 2020 , 8, 1901643	8.1	15	
1086	Increasing the Efficiency of Photocatalytic Reactions via Surface Microenvironment Engineering. Journal of the American Chemical Society, 2020, 142, 2738-2743	16.4	43	
1085	Smart Nanofluidic Systems: Engineering Smart Nanofluidic Systems for Artificial Ion Channels and Ion Pumps: From Single-Pore to Multichannel Membranes (Adv. Mater. 4/2020). <i>Advanced Materials</i> , 2020 , 32, 2070026	24		
1084	Peanut Leaf-Inspired Hybrid Metal-Organic Framework with Humidity-Responsive Wettability: toward Controllable Separation of Diverse Emulsions. <i>ACS Applied Materials & Diverse Emulsions</i> , 12, 6309-6318	9.5	12	

1083	Layered-Perovskite Nanowires with Long-Range Orientational Order for Ultrasensitive Photodetectors. <i>Advanced Materials</i> , 2020 , 32, e1905298	24	30
1082	Towards Practical Osmotic Energy Capture by a Layer-by-Layer Membrane. <i>Trends in Chemistry</i> , 2020 , 2, 180-182	14.8	7
1081	Improving Artificial Photosynthesis over Carbon Nitride by Gas-Liquid-Solid Interface Management for Full Light-Induced CO Reduction to C and C Fuels and O. <i>ChemSusChem</i> , 2020 , 13, 1730-1734	8.3	33
1080	Super-tough MXene-functionalized graphene sheets. <i>Nature Communications</i> , 2020 , 11, 2077	17.4	132
1079	Hydrogen-Bonding-Driven Tough Ionogels Containing Spiropyran-Functionalized Ionic Liquids. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 2359-2365	4.3	11
1078	Reversibly Thermosecreting Organogels with Switchable Lubrication and Anti-Icing Performance. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11876-11880	16.4	27
1077	Layered nanocomposites by shear-flow-induced alignment of nanosheets. <i>Nature</i> , 2020 , 580, 210-215	50.4	126
1076	Directed motion of an impinging water dropletBeesaw effect. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 7889-7896	13	8
1075	Ultratough graphene-black phosphorus films. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 8727-8735	11.5	40
1074	Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion. <i>National Science Review</i> , 2020 , 7, 1349-1359	10.8	35
1073	Cactus kirigami for efficient fog harvesting: simplifying a 3D cactus into 2D paper art. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 13452-13458	13	41
1072	Metal-Organic Framework Membrane Nanopores as Biomimetic Photoresponsive Ion Channels and Photodriven Ion Pumps. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 12795-12799	16.4	25
1071	Reversibly Thermosecreting Organogels with Switchable Lubrication and Anti-Icing Performance. <i>Angewandte Chemie</i> , 2020 , 132, 11974-11978	3.6	3
1070	Complex multiphase organohydrogels with programmable mechanics toward adaptive soft-matter machines. <i>Science Advances</i> , 2020 , 6, eaax1464	14.3	63
1069	Flexible Dry Hydrogel with Lamella-Like Structure Engineered via Dehydration in Poor Solvent. <i>CCS Chemistry</i> , 2020 , 2, 533-543	7.2	
1068	Flexible Dry Hydrogel with Lamella-Like Structure Engineered via Dehydration in Poor Solvent. <i>CCS Chemistry</i> , 2020 , 2, 533-543	7.2	4
1067	Pressing-Induced Caking: A General Strategy to Scale-Span Molecular Self-Assembly. <i>CCS Chemistry</i> , 2020 , 2, 98-106	7.2	7
1066	Counterintuitive Ballistic and Directional Liquid Transport on a Flexible Droplet Rectifier. <i>Research</i> , 2020 , 2020, 6472313	7.8	5

1065	Bioinformation transformation: From ionics to quantum ionics. Science China Materials, 2020, 63, 167-17	7% .1	8
1064	Voltage-induced penetration effect in liquid metals at room temperature. <i>National Science Review</i> , 2020 , 7, 366-372	10.8	20
1063	Stable Omniphobic Anisotropic Covalently Grafted Slippery Surfaces for Directional Transportation of Drops and Bubbles. <i>Advanced Functional Materials</i> , 2020 , 30, 1902686	15.6	25
1062	Photoinduced Directional Proton Transport through Printed Asymmetric Graphene Oxide Superstructures: A New Driving Mechanism under Full-Area Light Illumination. <i>Advanced Functional Materials</i> , 2020 , 30, 1907549	15.6	13
1061	Bioinspired Multiscale Wet Adhesive Surfaces: Structures and Controlled Adhesion. <i>Advanced Functional Materials</i> , 2020 , 30, 1905287	15.6	73
1060	Bioinspired Hollow Nanoreactor: Catalysts that Carry Gaseous Hydrogen for Enhanced Gas-Liquid-Solid Three-Phase Hydrogenation Reactions. <i>ChemCatChem</i> , 2020 , 12, 459-462	5.2	4
1059	An Engineered Superhydrophilic/Superaerophobic Electrocatalyst Composed of the Supported CoMoS Chalcogel for Overall Water Splitting. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 1659	- 16:4 5	116
1058	Carbon nitride nanotube for ion transport based photo-rechargeable electric energy storage. <i>Nano Energy</i> , 2020 , 67, 104230	17.1	30
1057	Regulation of Nanomaterials: Design of Nanoparticle Systems by Controllable Assembly and Temporal/Spatial Regulation (Adv. Funct. Mater. 2/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070)dF1 ⁶	
1056	Ultrathin and Robust Silk Fibroin Membrane for High-Performance Osmotic Energy Conversion. <i>ACS Energy Letters</i> , 2020 , 5, 742-748	20.1	49
1055	Manipulating the hydrophobicity of DNA as a universal strategy for visual biosensing. <i>Nature Protocols</i> , 2020 , 15, 316-337	18.8	5
1054	Transparent, mechanically robust, and ultrastable ionogels enabled by hydrogen bonding between elastomers and ionic liquids. <i>Materials Horizons</i> , 2020 , 7, 912-918	14.4	116
1053	Heteronetwork organohydrogels with exceptional swelling-resistance and adaptive antifouling performance. <i>Polymer Chemistry</i> , 2020 , 11, 68-74	4.9	3
1052	Bio-inspired photonic crystal patterns. <i>Materials Horizons</i> , 2020 , 7, 338-365	14.4	83
1051	Coating flano-armorffor robust superwetting micro/nanostructure. <i>Chemical Engineering Journal</i> , 2020 , 385, 123924	14.7	8
1050	Specific Recognition of Uranyl Ion Employing a Functionalized Nanochannel Platform for Dealing with Radioactive Contamination. <i>ACS Applied Materials & Employed Platform For Dealing With Radioactive Contamination</i> .	9.5	13
1049	Switchable Direction of Liquid Transport an Anisotropic Microarray Surface and Thermal Stimuli. <i>ACS Nano</i> , 2020 , 14, 1436-1444	16.7	20
1048	An Innovative Design by Single-Layer Superaerophobic Mesh: Continuous Underwater Bubble Antibuoyancy Collection and Transportation. <i>Advanced Functional Materials</i> , 2020 , 30, 1907027	15.6	10

1047	Evaluation of a novel polyamide-polyethylenimine nanofiltration membrane for wastewater treatment: Removal of Cu2+ ions. <i>Chemical Engineering Journal</i> , 2020 , 392, 123769	14.7	23
1046	Engineering Smart Nanofluidic Systems for Artificial Ion Channels and Ion Pumps: From Single-Pore to Multichannel Membranes. <i>Advanced Materials</i> , 2020 , 32, e1904351	24	46
1045	A Multi-Wall Sn/SnO2@Carbon Hollow Nanofiber Anode Material for High-Rate and Long-Life Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2020 , 132, 2486-2493	3.6	30
1044	A Multi-Wall Sn/SnO @Carbon Hollow Nanofiber Anode Material for High-Rate and Long-Life Lithium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 2465-2472	16.4	107
1043	Light-Powered Directional Nanofluidic Ion Transport in Kirigami-Made Asymmetric Photonic-Ionic Devices. <i>Small</i> , 2020 , 16, e1905557	11	8
1042	Controllable Heterogeneous Nucleation for Patterning High-Quality Vertical and Horizontal ZnO Microstructures toward Photodetectors. <i>Small</i> , 2020 , 16, e2004136	11	6
1041	One-Dimensional Arrays of Sensing Materials Based on Wettability Interface Dewetting Process. <i>Accounts of Materials Research</i> , 2020 , 1, 53-62	7.5	О
1040	Polymeric Nano-Blue-Energy Generator Based on Anion-Selective Ionomers with 3D Pores and pH-Driving Gating. <i>Advanced Energy Materials</i> , 2020 , 10, 2001552	21.8	9
1039	Strong sequentially bridged MXene sheets. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 27154-27161	11.5	50
1038	Improved Ion Transport in Hydrogel-Based Nanofluidics for Osmotic Energy Conversion. <i>ACS Central Science</i> , 2020 , 6, 2097-2104	16.8	20
1037	Large-Area Tunable Red/Green/Blue Tri-Stacked Quantum Dot Light-Emitting Diode Using Sandwich-Structured Transparent Silver Nanowires Electrodes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 48820-48827	9.5	3
1036	Bioinspired Nanoporous Membrane for Salinity Gradient Energy Harvesting. <i>Joule</i> , 2020 , 4, 2244-2248	27.8	38
1035	Biomimetic Nacre-Like Silk-Crosslinked Membranes for Osmotic Energy Harvesting. <i>ACS Nano</i> , 2020 , 14, 9701-9710	16.7	44
1034	Improved Ion Transport and High Energy Conversion through Hydrogel Membrane with 3D Interconnected Nanopores. <i>Nano Letters</i> , 2020 , 20, 5705-5713	11.5	33
1033	Enhanced ionic photocurrent generation through a homogeneous graphene derivative composite membrane. <i>Chemical Communications</i> , 2020 , 56, 9819-9822	5.8	1
1032	pH-regulated thermo-driven nanofluidics for nanoconfined mass transport and energy conversion. <i>Nanoscale Advances</i> , 2020 , 2, 4070-4076	5.1	2
1031	Blue Energy: Polymeric Nano-Blue-Energy Generator Based on Anion-Selective Ionomers with 3D Pores and pH-Driving Gating (Adv. Energy Mater. 44/2020). <i>Advanced Energy Materials</i> , 2020 , 10, 207018	82 ^{1.8}	
1030	Wetting-Induced Fabrication of Graphene Hybrid with Conducting Polymers for High-Performance Flexible Transparent Electrodes. <i>ACS Applied Materials & Distributed Flexible Transparent Electrodes</i> . 12, 55372-55381	9.5	7

(2020-2020)

Low threshold lasing emissions from a single upconversion nanocrystal. <i>Nature Communications</i> , 2020 , 11, 6156	17.4	16
1028 Long-Range Ordered Water Correlations between AII/CII Nucleotides. <i>Matter</i> , 2020 , 3, 794-804	12.7	4
1027 Molecular-Structure-Induced Under-Liquid Dual Superlyophobic Surfaces. ACS Nano, 2020 , 14, 14	869-148 <i>7</i> 77	14
A sunlight-responsive metalBrganic framework system for sustainable water desalination. <i>Nature Sustainability</i> , 2020 , 3, 1052-1058	22.1	53
Enhanced ion transport by graphene oxide/cellulose nanofibers assembled membranes for high-performance osmotic energy harvesting. <i>Materials Horizons</i> , 2020 , 7, 2702-2709	14.4	39
Switchable Wettability and Adhesion of Micro/Nanostructured Elastomer Surface via Electric Fiel for Dynamic Liquid Droplet Manipulation. <i>Advanced Science</i> , 2020 , 7, 2000772	ld 13.6	23
Efficient spreading and controllable penetration of high-speed drops on superhydrophobic surfa by vesicles. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 17392-17398	ce ₁₃	5
Bioinspired Hydrogel-Polymer Hybrids with a Tough and Antifatigue Interface via One-Step Polymerization. <i>ACS Applied Materials & Dolymerization (Material &</i>	9.5	11
High-Performance Unidirectional Manipulation of Microdroplets by Horizontal Vibration on Femtosecond Laser-Induced Slant Microwall Arrays. <i>Advanced Materials</i> , 2020 , 32, e2005039	24	24
1020 Finger directed surface charges for local droplet motion. <i>Soft Matter</i> , 2020 , 16, 9176-9182	3.6	2
1019 Superlyophilic Shape Memory Porous Sponge for Smart Liquid Permeation. ACS Nano, 2020 , 14, 1	4047-1 46 <i>5</i> ₇ 6	11
1018 Quantum-confined superfluid reactions. <i>Chemical Science</i> , 2020 , 11, 10035-10046	9.4	12
Capillary-Bridge Controlled Patterning of Stable Double-Perovskite Microwire Arrays for Non-tox Photodetectors. <i>Frontiers in Chemistry</i> , 2020 , 8, 632	cic 5	4
Bioinspired Ultrafast-Responsive Nanofluidic System for Ion and Molecule Transport with Speed Control. <i>ACS Nano</i> , 2020 , 14, 12614-12620	16.7	9
Liquid harvesting and transport on multiscaled curvatures. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 23436-23442	of _{11.5}	26
1014 Directional liquid dynamics of interfaces with superwettability. <i>Science Advances</i> , 2020 , 6,	14.3	72
Programmable Single-Crystalline PbI2 Microplate Arrays and Their Organic/Inorganic Heterojunctions. <i>Advanced Functional Materials</i> , 2020 , 30, 2003631	15.6	5
Design of Nanoparticle Systems by Controllable Assembly and Temporal/Spatial Regulation. Advanced Functional Materials, 2020 , 30, 1903351	15.6	8

1011	An Engineered Superhydrophilic/Superaerophobic Electrocatalyst Composed of the Supported CoMoSx Chalcogel for Overall Water Splitting. <i>Angewandte Chemie</i> , 2020 , 132, 1676-1682	3.6	8
1010	Flexible Biosensors: High-Performance Flexible Bioelectrocatalysis Bioassay System Based on a Triphase Interface (Adv. Mater. Interfaces 6/2020). <i>Advanced Materials Interfaces</i> , 2020 , 7, 2070028	4.6	
1009	Restoration of superwetting switching on TiO2 coated shape memory polymer arrays. <i>Chemical Engineering Journal</i> , 2020 , 394, 124996	14.7	10
1008	The highly efficient collection of underwater oil droplets on an anisotropic porous cone surface via an electric field. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 8605-8611	13	3
1007	High-Performance Flexible Bioelectrocatalysis Bioassay System Based on a Triphase Interface. <i>Advanced Materials Interfaces</i> , 2020 , 7, 1902172	4.6	5
1006	Oxygen-Tolerant Hydrogen Peroxide Reduction Catalysts for Reliable Noninvasive Bioassays. <i>Small</i> , 2019 , 15, e1903320	11	4
1005	Bioinspired Janus Textile with Conical Micropores for Human Body Moisture and Thermal Management. <i>Advanced Materials</i> , 2019 , 31, e1904113	24	127
1004	High-performance silk-based hybrid membranes employed for osmotic energy conversion. <i>Nature Communications</i> , 2019 , 10, 3876	17.4	141
1003	Bio-Inspired Elastic Liquid-Infused Material for On-Demand Underwater Manipulation of Air Bubbles. <i>ACS Nano</i> , 2019 , 13, 10596-10602	16.7	25
1002	Geometric structure-guided photo-driven ion current through asymmetric graphene oxide membranes. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20182-20186	13	10
1001	A Butterfly-Inspired Hierarchical Light-Trapping Structure towards a High-Performance Polarization-Sensitive Perovskite Photodetector. <i>Angewandte Chemie</i> , 2019 , 131, 16608-16614	3.6	16
1000	Nano-confined crystallization of organic ultrathin nanostructure arrays with programmable geometries. <i>Nature Communications</i> , 2019 , 10, 3912	17.4	21
999	Plastic-like Hydrogels with Reversible Conversion of Elasticity and Plasticity and Tunable Mechanical Properties. <i>ACS Applied Materials & Description</i> (1), 41659-41667	9.5	19
998	Thermally Driven Interfacial Switch between Adhesion and Antiadhesion on Gas Bubbles in Aqueous Media. <i>ACS Applied Materials & Samp; Interfaces</i> , 2019 , 11, 37365-37370	9.5	8
997	Recent advances in one-dimensional assembly of nanoparticles. <i>Chemical Society Reviews</i> , 2019 , 48, 8-2	1 58.5	44
996	Magnetocontrollable Droplet and Bubble Manipulation on a Stable Amphibious Slippery Gel Surface. <i>Advanced Functional Materials</i> , 2019 , 29, 1808717	15.6	63
995	Temperature-Driven Precise Control of Biological Droplet's Adhesion on a Slippery Surface. <i>ACS Applied Materials & Droplet & Applied Materials & Droplet & </i>	9.5	35
994	Thermoresponsive Graphene Membranes with Reversible Gating Regularity for Smart Fluid Control. <i>Advanced Functional Materials</i> , 2019 , 29, 1808501	15.6	43

993	Ultratough nacre-inspired epoxygraphene composites with shape memory properties. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 2787-2794	13	34	
992	Design of hierarchical comb hydrophilic polymer brush (HCHPB) surfaces inspired by fish mucus for anti-biofouling. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 1322-1332	7.3	23	
991	Multiple Superwettable Nanofiber Arrays Prepared by a Facile Dewetting Strategy via Controllably Localizing a Low-Energy Compound. <i>Advanced Functional Materials</i> , 2019 , 29, 1900060	15.6	6	
990	Nanoconfinement: 1D Nanoconfined Ordered-Assembly Reaction (Adv. Mater. Interfaces 8/2019). <i>Advanced Materials Interfaces</i> , 2019 , 6, 1970054	4.6	2	
989	Direct-writing Structure Color Patterns on the Electrospun Colloidal Fibers toward Wearable Materials. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2019 , 37, 729-736	3.5	8	
988	Bioinspired inner microstructured tube controlled capillary rise. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 12704-12709	11.5	47	
987	Fast and selective fluoride ion conduction in sub-1-nanometer metal-organic framework channels. <i>Nature Communications</i> , 2019 , 10, 2490	17.4	89	
986	Surface-Embedding of Functional Micro-/Nanoparticles for Achieving Versatile Superhydrophobic Interfaces. <i>Matter</i> , 2019 , 1, 661-673	12.7	85	
985	Diffusion-Freezing-Induced Microphase Separation for Constructing Large-Area Multiscale Structures on Hydrogel Surfaces. <i>Advanced Materials</i> , 2019 , 31, e1808217	24	19	
984	Ordered-Assembly Conductive Nanowires Array with Tunable Polymeric Structure for Specific Organic Vapor Detection. <i>Small</i> , 2019 , 15, e1900590	11	11	
983	Cryogenic Compression Properties and Failure Mechanism of Lightweight 3D MWK Carbon Fabric Reinforced Epoxy Composites. <i>Fibers and Polymers</i> , 2019 , 20, 642-650	2	4	
982	Räktitelbild: Ultra-Tough Inverse Artificial Nacre Based on Epoxy-Graphene by Freeze-Casting (Angew. Chem. 23/2019). <i>Angewandte Chemie</i> , 2019 , 131, 7962-7962	3.6		
981	Ion/Molecule Transportation in Nanopores and Nanochannels: From Critical Principles to Diverse Functions. <i>Journal of the American Chemical Society</i> , 2019 , 141, 8658-8669	16.4	150	
980	Quantum-confined superfluid. <i>Nanoscale Horizons</i> , 2019 , 4, 1029-1036	10.8	17	
979	Rectified Ion Transport Through 2D Nanofluidic Heterojunctions. <i>Physica Status Solidi - Rapid Research Letters</i> , 2019 , 13, 1900129	2.5	4	
978	Gecko toe pads inspired in situ switchable superhydrophobic shape memory adhesive film. <i>Nanoscale</i> , 2019 , 11, 8984-8993	7.7	38	
977	In Situ Reversible Control between Sliding and Pinning for Diverse Liquids under Ultra-Low Voltage. <i>ACS Nano</i> , 2019 , 13, 5742-5752	16.7	48	
976	Unidirectional liquid transportation and selective permeation for oil/water separation on a gradient nanowire structured surface. <i>Journal of Membrane Science</i> , 2019 , 582, 246-253	9.6	7	

975	Ultra-Tough Inverse Artificial Nacre Based on Epoxy-Graphene by Freeze-Casting. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 7636-7640	16.4	53
974	Bioinspired Slippery Cone for Controllable Manipulation of Gas Bubbles in Low-Surface-Tension Environment. <i>ACS Nano</i> , 2019 , 13, 4083-4090	16.7	42
973	Interpenetrating Janus Membrane for High Rectification Ratio Liquid Unidirectional Penetration. <i>ACS Nano</i> , 2019 , 13, 4124-4132	16.7	76
972	Chirality Controls Mesenchymal Stem Cell Lineage Diversification through Mechanoresponses. <i>Advanced Materials</i> , 2019 , 31, e1900582	24	37
971	Smart Superhydrophobic Shape Memory Adhesive Surface toward Selective Capture/Release of Microdroplets. <i>ACS Applied Materials & Acs Applied & Acs</i>	9.5	49
970	1D Nanoconfined Ordered-Assembly Reaction. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1900104	4.6	12
969	Electrokinetically Controlled Asymmetric Ion Transport through 1D/2D Nanofluidic Heterojunctions. <i>Advanced Materials Technologies</i> , 2019 , 4, 1800742	6.8	21
968	Ultra-Tough Inverse Artificial Nacre Based on Epoxy-Graphene by Freeze-Casting. <i>Angewandte Chemie</i> , 2019 , 131, 7718-7722	3.6	5
967	Blue Energy: Understanding the Giant Gap between Single-Pore- and Membrane-Based Nanofluidic Osmotic Power Generators (Small 11/2019). <i>Small</i> , 2019 , 15, 1970059	11	
966	In-Air Bubble Phobicity and Bubble Philicity Depending on the Interfacial Air Cushion: Toward Bubbles Manipulation Using Superhydrophilic Substrates. <i>Advanced Functional Materials</i> , 2019 , 29, 1900	0487	12
965	Asymmetric Electrokinetic Proton Transport through 2D Nanofluidic Heterojunctions. <i>ACS Nano</i> , 2019 , 13, 4238-4245	16.7	47
964	Photo-induced ultrafast active ion transport through graphene oxide membranes. <i>Nature Communications</i> , 2019 , 10, 1171	17.4	82
963	In situ reversible underwater superwetting transition by electrochemical atomic alternation. <i>Nature Communications</i> , 2019 , 10, 1212	17.4	20
962	Asymmetric micro-ratchets regulated drop dispensing on bamboo mimetic surface. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 9550-9555	13	4
961	Highly Ordered Semiconducting Polymer Arrays for Sensitive Photodetectors. <i>ACS Applied Materials & ACS Applied</i> Materials & M	9.5	6
960	Gated ion transport through layered graphene oxide membranes. <i>New Journal of Chemistry</i> , 2019 , 43, 7190-7193	3.6	4
959	Super-tough and strong nanocomposite fibers by flow-induced alignment of carbon nanotubes on grooved hydrogel surfaces. <i>Science China Materials</i> , 2019 , 62, 1332-1340	7.1	8

957	Engineered PES/SPES nanochannel membrane for salinity gradient power generation. <i>Nano Energy</i> , 2019 , 59, 354-362	17.1	44
956	Geometry modulation of ion diffusion through layered asymmetric graphene oxide membranes. <i>Chemical Communications</i> , 2019 , 55, 3140-3143	5.8	7
955	Aminoazobenzene@Ag modified meshes with large extent photo-response: towards reversible oil/water removal from oil/water mixtures. <i>Chemical Science</i> , 2019 , 10, 4089-4096	9.4	27
954	Bio-inspired liquid crystal actuator materials. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 3413-3428	7.1	50
953	Engineered Nanochannel Membranes with Diode-like Behavior for Energy Conversion over a Wide pH Range. <i>ACS Applied Materials & Diode State State</i>	9.5	46
952	Temperature effects on the compression behavior and failure of 3-D MWK glass fabric-reinforced epoxy composites. <i>High Performance Polymers</i> , 2019 , 31, 449-461	1.6	4
951	Remote Photothermal Actuation of Underwater Bubble toward Arbitrary Direction on Planar Slippery Fe3O4-Doped Surfaces. <i>Advanced Functional Materials</i> , 2019 , 29, 1904766	15.6	30
950	Unidirectional Liquid Manipulation Via an Integrated Mesh with Orthogonal Anisotropic Slippery Tracks. <i>Advanced Functional Materials</i> , 2019 , 29, 1904446	15.6	25
949	A Butterfly-Inspired Hierarchical Light-Trapping Structure towards a High-Performance Polarization-Sensitive Perovskite Photodetector. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 16456-16462	16.4	42
948	Multifunctional Magnetocontrollable Superwettable-Microcilia Surface for Directional Droplet Manipulation. <i>Advanced Science</i> , 2019 , 6, 1900834	13.6	55
947	Asymmetric Wettability Interfaces Induced a Large-Area Quantum Dot Microstructure toward High-Resolution Quantum Dot Light-Emitting Diodes. <i>ACS Applied Materials & Diodes amp; Interfaces</i> , 2019 , 11, 28520-28526	9.5	6
946	Anti-corrosion porous RuO/NbC anodes for the electrochemical oxidation of phenol <i>RSC Advances</i> , 2019 , 9, 17373-17381	3.7	6
945	Temperature-induced switchable interfacial interactions on slippery surfaces for controllable liquid manipulation. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18510-18518	13	21
944	Fabrication and photonic applications of large-domain blue phase films. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 9460-9466	7.1	20
943	Continuously Tunable Ion Rectification and Conductance in Submicrochannels Stemming from Thermoresponsive Polymer Self-Assembly. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12481-1	24 8 5	23
942	Photo-Driven Ion Transport for a Photodetector Based on an Asymmetric Carbon Nitride Nanotube Membrane. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12574-12579	16.4	53
941	A biomimetic nanofluidic diode based on surface-modified polymeric carbon nitride nanotubes. <i>Beilstein Journal of Nanotechnology</i> , 2019 , 10, 1316-1323	3	11
940	Photo-Driven Ion Transport for a Photodetector Based on an Asymmetric Carbon Nitride Nanotube Membrane. <i>Angewandte Chemie</i> , 2019 , 131, 12704-12709	3.6	5

939	Simultaneous High Conversion and Selectivity in Olefin Oxidation with Oxygen Through Solid/Liquid/Gas Three-Phase Interface Design. <i>ChemCatChem</i> , 2019 , 11, 4524-4528	5.2	3
938	Random Organic Nanolaser Arrays for Cryptographic Primitives. <i>Advanced Materials</i> , 2019 , 31, e180788	024	45
937	Light-Driven Active Proton Transport through Photoacid- and Photobase-Doped Janus Graphene Oxide Membranes. <i>Advanced Materials</i> , 2019 , 31, e1903029	24	42
936	Face-Sharing Archimedean Solids Stacking for the Construction of Mixed-Ligand Metal-Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2019 , 141, 13841-13848	16.4	62
935	Bioinspired Self-Propulsion of Water Droplets at the Convergence of Janus-Textured Heated Substrates. <i>Advanced Functional Materials</i> , 2019 , 29, 1904535	15.6	9
934	Programmable unidirectional liquid transport on peristome-mimetic surfaces under liquid environments. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18244-18248	13	12
933	Enhancing Droplet Deposition on Wired and Curved Superhydrophobic Leaves. ACS Nano, 2019 , 13, 796	56£89 ₇ 7	4 55
932	Direct Water-Writing/Electroerasing Pattern on PEDOT Inverse Opals. <i>Advanced Functional Materials</i> , 2019 , 29, 1808473	15.6	25
931	Controllable High-Speed Electrostatic Manipulation of Water Droplets on a Superhydrophobic Surface. <i>Advanced Materials</i> , 2019 , 31, e1905449	24	70
930	Smart behavior of collagen skin: water-sensitive shape memory. <i>Materials Today: Proceedings</i> , 2019 , 16, 1415-1422	1.4	2
929	Ion Transport in Nanofluidic Devices for Energy Harvesting. <i>Joule</i> , 2019 , 3, 2364-2380	27.8	109
928	Wettability manipulation of overflow behavior via vesicle surfactant for water-proof surface cleaning. <i>Materials Horizons</i> , 2019 , 6, 294-301	14.4	28
927	Bioinspired Tip-Guidance Liquid Jetting and Droplet Emission at a Rotary Disk a Surface Energy Gradient. <i>ACS Nano</i> , 2019 , 13, 13100-13108	16.7	7
926	Highly Efficient Ionic Photocurrent Generation through WS -Based 2D Nanofluidic Channels. <i>Small</i> , 2019 , 15, e1905355	11	23
925	Tunable Ionic Liquid-Water Separation Enabled by Bioinspired Superwetting Porous Gel Membranes. <i>ACS Applied Materials & Acs Separation Enabled</i> 31, 11, 44844-44850	9.5	8
924	Photonic Shape Memory Polymer Based on Liquid Crystalline Blue Phase Films. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 46124-46131	9.5	25
923	Bioinspired in Vitro Lung Airway Model for Inflammatory Analysis via Hydrophobic Nanochannel Membrane with Joint Three-Phase Interface. <i>Analytical Chemistry</i> , 2019 , 91, 15804-15810	7.8	5
922	Continuous and Controllable Liquid Transfer Guided by a Fibrous Liquid Bridge: Toward High-Performance QLEDs. <i>Advanced Materials</i> , 2019 , 31, e1904610	24	16

921	Uniform Spread of High-Speed Drops on Superhydrophobic Surface by Live-Oligomeric Surfactant Jamming. <i>Advanced Materials</i> , 2019 , 31, e1904475	24	26
920	Droplet Manipulation: Multifunctional Magnetocontrollable Superwettable-Microcilia Surface for Directional Droplet Manipulation (Adv. Sci. 17/2019). <i>Advanced Science</i> , 2019 , 6, 1970102	13.6	78
919	Continuously Tunable Ion Rectification and Conductance in Submicrochannels Stemming from Thermoresponsive Polymer Self-Assembly. <i>Angewandte Chemie</i> , 2019 , 131, 12611-12615	3.6	3
918	Adaptive Superamphiphilic Organohydrogels with Reconfigurable Surface Topography for Programming Unidirectional Liquid Transport. <i>Advanced Functional Materials</i> , 2019 , 29, 1807858	15.6	33
917	Bioinspired Self-Healing Liquid Films for Ultradurable Electronics. ACS Nano, 2019, 13, 3225-3231	16.7	24
916	Printable photonic polymer coating based on a monodomain blue phase liquid crystal network. Journal of Materials Chemistry C, 2019 , 7, 13764-13769	7.1	13
915	Efficient separation of immiscible oil/water mixtures using a perforated lotus leaf. <i>Green Chemistry</i> , 2019 , 21, 6579-6584	10	30
914	Patterning Smectic Liquid Crystals for OFETs at Low Temperature. <i>Advanced Functional Materials</i> , 2019 , 29, 1804838	15.6	9
913	Bioinspired Self-Gating Nanofluidic Devices for Autonomous and Periodic Ion Transport and Cargo Release. <i>Advanced Functional Materials</i> , 2019 , 29, 1806416	15.6	18
912	Slippery Surface Based on Photoelectric Responsive Nanoporous Composites with Optimal Wettability Region for Droplets' Multifunctional Manipulation. <i>Advanced Science</i> , 2019 , 6, 1801231	13.6	34
911	Understanding the Giant Gap between Single-Pore- and Membrane-Based Nanofluidic Osmotic Power Generators. <i>Small</i> , 2019 , 15, e1804279	11	56
910	A UV-Responsive Multifunctional Photoelectric Device Based on Discotic Columnar Nanostructures and Molecular Motors. <i>Advanced Materials</i> , 2019 , 31, e1806016	24	7
909	Artificial light-driven ion pump for photoelectric energy conversion. <i>Nature Communications</i> , 2019 , 10, 74	17.4	94
908	Wetting-Induced Climbing for Transferring Interfacially Assembled Large-Area Ultrathin Pristine Graphene Film. <i>Advanced Materials</i> , 2019 , 31, e1806742	24	13
907	Quantum-confined ion superfluid in nerve signal transmission. <i>Nano Research</i> , 2019 , 12, 1219-1221	10	26
906	Progress of binary cooperative complementary interfacial nanomaterials. <i>Nano Today</i> , 2019 , 24, 48-80	17.9	10
905	Wettability and Applications of Nanochannels. Advanced Materials, 2019, 31, e1804508	24	79
904	Bioinspired Hairy Crab Claw Polymer Surface with Excellent Self-Cleaning Wettability in Muddy or Oil-Contaminated Water <i>ACS Applied Bio Materials</i> , 2019 , 2, 424-429	4.1	1

903	A Magnetic Gated Nanofluidic Based on the Integration of a Superhydrophilic Nanochannels and a Reconfigurable Ferrofluid. <i>Advanced Materials</i> , 2019 , 31, e1805953	24	15
902	A Self-Pumping Dressing for Draining Excessive Biofluid around Wounds. <i>Advanced Materials</i> , 2019 , 31, e1804187	24	84
901	Stable EcsPbi3 Perovskite Nanowire Arrays with Preferential Crystallographic Orientation for Highly Sensitive Photodetectors. <i>Advanced Functional Materials</i> , 2019 , 29, 1808741	15.6	57
900	Janus Gradient Meshes for Continuous Separation and Collection of Flowing Oils under Water. <i>ACS Applied Materials & Applied &</i>	9.5	28
899	A Pb ionic gate with enhanced stability and improved sensitivity based on a 4'-aminobenzo-18-crown-6 modified funnel-shaped nanochannel. <i>Faraday Discussions</i> , 2018 , 210, 101-11	1 ^{3.6}	16
898	A general strategy to simulate osmotic energy conversion in multi-pore nanofluidic systems. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 935-941	7.8	30
897	Mimicking a Dog's Nose: Scrolling Graphene Nanosheets. ACS Nano, 2018, 12, 2521-2530	16.7	49
896	Tunable Emission Color and Morphology of Organic Microcrystals by a L ocrystal Approach. Advanced Optical Materials, 2018 , 6, 1701300	8.1	34
895	Manipulation of Colloidal Particles in Three Dimensions via Microfluid Engineering. <i>Advanced Materials</i> , 2018 , 30, e1707291	24	21
894	Smart DNA Hydrogel Integrated Nanochannels with High Ion Flux and Adjustable Selective Ionic Transport. <i>Angewandte Chemie</i> , 2018 , 130, 7916-7920	3.6	10
893	Smart DNA Hydrogel Integrated Nanochannels with High Ion Flux and Adjustable Selective Ionic Transport. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7790-7794	16.4	71
892	Patterning of Discotic Liquid Crystals with Tunable Molecular Orientation for Electronic Applications. <i>Small</i> , 2018 , 14, e1800557	11	17
891	Thermo-Driven Controllable Emulsion Separation by a Polymer-Decorated Membrane with Switchable Wettability. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 5740-5745	16.4	115
890	Highly Boosted Microbial Extracellular Electron Transfer by Semiconductor Nanowire Array with Suitable Energy Level. <i>Advanced Functional Materials</i> , 2018 , 28, 1707408	15.6	12
889	Thermo-Driven Controllable Emulsion Separation by a Polymer-Decorated Membrane with Switchable Wettability. <i>Angewandte Chemie</i> , 2018 , 130, 5842-5847	3.6	11
888	Magnetically Induced Low Adhesive Direction of Nano/Micropillar Arrays for Microdroplet Transport. <i>Advanced Functional Materials</i> , 2018 , 28, 1800163	15.6	82
887	Naked-eye point-of-care testing platform based on a pH-responsive superwetting surface: toward the non-invasive detection of glucose. <i>NPG Asia Materials</i> , 2018 , 10, 177-189	10.3	42
886	Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport. <i>Science Advances</i> , 2018 , 4, eaao6724	14.3	74

(2018-2018)

885	Magnetic Gated Biomimetic Artificial Nanochannels for Controllable Ion Transportation Inspired by Homing Pigeon. <i>Small</i> , 2018 , 14, e1703369	11	10
884	Cilia-Inspired Flexible Arrays for Intelligent Transport of Viscoelastic Microspheres. <i>Advanced Functional Materials</i> , 2018 , 28, 1706666	15.6	37
883	Lyophilic but Nonwettable Organosilane-Polymerized Carbon Dots Inverse Opals with Closed-Cell Structure. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 6701-6710	9.5	28
882	Directional Transport: Bioinspired Continuous and Spontaneous Antigravity Oil Collection and Transportation (Adv. Funct. Mater. 5/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870032	15.6	5
881	Temperature-Responsive Anisotropic Slippery Surface for Smart Control of the Droplet Motion. <i>ACS Applied Materials & Droplet Motion</i> . 10, 7442-7450	9.5	65
880	Unidirectional water delivery on a superhydrophilic surface with two-dimensional asymmetrical wettability barriers. <i>Materials Horizons</i> , 2018 , 5, 303-308	14.4	58
879	Under-Oil Switchable Superhydrophobicity to Superhydrophilicity Transition on TiO Nanotube Arrays. <i>ACS Nano</i> , 2018 , 12, 1074-1082	16.7	72
878	Underwater Mechanically Robust Oil-Repellent Materials: Combining Conflicting Properties Using a Heterostructure. <i>Advanced Materials</i> , 2018 , 30, 1706634	24	46
877	Reversible Thermal-Induced Fluorescence Color Change of Tetraphenylethylene-Labeled Nylon-6. <i>Advanced Optical Materials</i> , 2018 , 6, 1701149	8.1	12
876	Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. <i>Science Advances</i> , 2018 , 4, eaaq0066	14.3	214
875	A Smart Superwetting Surface with Responsivity in Both Surface Chemistry and Microstructure. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 3701-3705	16.4	76
874	A Smart Superwetting Surface with Responsivity in Both Surface Chemistry and Microstructure. <i>Angewandte Chemie</i> , 2018 , 130, 3763-3767	3.6	17
873	Bioinspired Pressure-Tolerant Asymmetric Slippery Surface for Continuous Self-Transport of Gas Bubbles in Aqueous Environment. <i>ACS Nano</i> , 2018 , 12, 2048-2055	16.7	115
872	Multi-functional organosilane-polymerized carbon dot inverse opals. <i>Nanoscale</i> , 2018 , 10, 4642-4649	7.7	30
871	Single Nanochannel-Aptamer-Based Biosensor for Ultrasensitive and Selective Cocaine Detection. <i>ACS Applied Materials & Detection</i> , 10, 2033-2039	9.5	61
870	Effect of lubricant viscosity on the self-healing properties and electrically driven sliding of droplets on anisotropic slippery surfaces. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 3414-3421	13	74
869	Directional and Continuous Transport of Cas Pubbles on Superagrophilis Coometry Cradient		
	Directional and Continuous Transport of Gas Bubbles on Superaerophilic Geometry-Gradient Surfaces in Aqueous Environments. <i>Advanced Functional Materials</i> , 2018 , 28, 1705091	15.6	57

867	Bioinspired Interfacial Materials: From Binary Cooperative Complementary Interfaces to Superwettability Systems. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1701176	4.6	25
866	Wetting and spreading: Fundamental theories to cutting-edge applications. <i>Current Opinion in Colloid and Interface Science</i> , 2018 , 36, 10-19	7.6	38
865	Bioinspired Heterogeneous Ion Pump Membranes: Unidirectional Selective Pumping and Controllable Gating Properties Stemming from Asymmetric Ionic Group Distribution. <i>Journal of the American Chemical Society</i> , 2018 , 140, 1083-1090	16.4	61
864	Regular Aligned 1D Single-Crystalline Supramolecular Arrays for Photodetectors. <i>Small</i> , 2018 , 14, 1701	861	13
863	Reliable Manipulation of Gas Bubble Size on Superaerophilic Cones in Aqueous Media. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 5099-5106	9.5	16
862	Ballistic Jumping Drops on Superhydrophobic Surfaces via Electrostatic Manipulation. <i>Advanced Materials</i> , 2018 , 30, 1703838	24	53
861	Spontaneous and Directional Bubble Transport on Porous Copper Wires with Complex Shapes in Aqueous Media. <i>ACS Applied Materials & Materia</i>	9.5	18
860	Bioinspired smart asymmetric nanochannel membranes. <i>Chemical Society Reviews</i> , 2018 , 47, 322-356	58.5	250
859	Quantum-confined superfluid: From nature to artificial. Science China Materials, 2018, 61, 1027-1032	7.1	41
858	Time-Dependent Liquid Transport on a Biomimetic Topological Surface. ACS Nano, 2018, 12, 5149-5157	16.7	34
857	Aligning Ag Nanowires by a Facile Bioinspired Directional Liquid Transfer: Toward Anisotropic Flexible Conductive Electrodes. <i>Advanced Materials</i> , 2018 , 30, e1706938	24	59
856	Photo and Thermo Dual-Responsive Copolymer Surfaces for Efficient Cell Capture and Release. <i>ChemPhysChem</i> , 2018 , 19, 2107-2112	3.2	20
855	Light- and Electric-Field-Controlled Wetting Behavior in Nanochannels for Regulating Nanoconfined Mass Transport. <i>Journal of the American Chemical Society</i> , 2018 , 140, 4552-4559	16.4	72
854	Temperature-controlled morphology evolution of porphyrin nanostructures on a hydrophobic substrate. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 3849-3855	7.1	11
853	Heterostructures: Underwater Mechanically Robust Oil-Repellent Materials: Combining Conflicting Properties Using a Heterostructure (Adv. Mater. 11/2018). <i>Advanced Materials</i> , 2018 , 30, 1870076	24	1
852	Anomalous Pore-Density Dependence in Nanofluidic Osmotic Power Generation. <i>Chinese Journal of Chemistry</i> , 2018 , 36, 417-420	4.9	28
851	Bioinspired Continuous and Spontaneous Antigravity Oil Collection and Transportation. <i>Advanced Functional Materials</i> , 2018 , 28, 1704220	15.6	21
850	Multiple solvent-response behavior of metal-organic inverse opals. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2018 , 355, 125-130	4.7	2

849	Nanofluidic Ion Transport and Energy Conversion through Ultrathin Free-Standing Polymeric Carbon Nitride Membranes. <i>Angewandte Chemie</i> , 2018 , 130, 10280-10283	3.6	24
848	Collagen skin, a water-sensitive shape memory material. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 5144	- 5 152	21
847	Bioinspired Controllable Liquid Manipulation by Fibrous Array Driven by Elasticity. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 26819-26824	9.5	7
846	A stable solid slippery surface with thermally assisted self-healing ability. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 16355-16360	13	28
845	Ionogel/Copper Grid Composites for High-Performance, Ultra-Stable Flexible Transparent Electrodes. <i>ACS Applied Materials & Damp; Interfaces</i> , 2018 , 10, 29010-29018	9.5	20
844	On the Origin of Ion Selectivity in Ultrathin Nanopores: Insights for Membrane-Scale Osmotic Energy Conversion. <i>Advanced Functional Materials</i> , 2018 , 28, 1804189	15.6	64
843	A Liquid-Metal-Based Magnetoactive Slurry for Stimuli-Responsive Mechanically Adaptive Electrodes. <i>Advanced Materials</i> , 2018 , 30, e1802595	24	52
842	Strong, Conductive, Foldable Graphene Sheets by Sequential Ionic and Bridging. <i>Advanced Materials</i> , 2018 , 30, e1802733	24	53
841	Discovery of a Voltage-Stimulated Heartbeat Effect in Droplets of Liquid Gallium. <i>Physical Review Letters</i> , 2018 , 121, 024302	7.4	32
840	Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. <i>Nature Electronics</i> , 2018 , 1, 404-410	28.4	224
839	Sequentially bridged graphene sheets with high strength, toughness, and electrical conductivity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5359-5364	11.5	77
838	2D Organic Photonics: An Asymmetric Optical Waveguide in Self-Assembled Halogen-Bonded Cocrystals. <i>Angewandte Chemie</i> , 2018 , 130, 11470-11474	3.6	33
837	2D Organic Photonics: An Asymmetric Optical Waveguide in Self-Assembled Halogen-Bonded Cocrystals. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 11300-11304	16.4	72
836	Engineered Artificial Nanochannels for Nitrite Ion Harmless Conversion. <i>ACS Applied Materials</i> & amp; Interfaces, 2018 , 10, 30852-30859	9.5	12
835	Macroporous Conductive Hydrogels with Fatigue Resistance as Strain Sensor for Human Motion Monitoring. <i>Macromolecular Materials and Engineering</i> , 2018 , 303, 1800339	3.9	20
834	Silver Nanowires: Aligning Ag Nanowires by a Facile Bioinspired Directional Liquid Transfer: Toward Anisotropic Flexible Conductive Electrodes (Adv. Mater. 25/2018). <i>Advanced Materials</i> , 2018 , 30, 18701	78 ⁴	
833	Reversible solvent-sensitive actuator with continuous bending/debending process from liquid crystal elastomer-colloidal material. <i>Soft Matter</i> , 2018 , 14, 5547-5553	3.6	11
832	Superwetting Electrodes for Gas-Involving Electrocatalysis. <i>Accounts of Chemical Research</i> , 2018 , 51, 1590-1598	24.3	235

831	High-Sensitivity Detection of Iron(III) by Dopamine-Modified Funnel-Shaped Nanochannels. <i>ACS Applied Materials & Dopamine Modified Funnel-Shaped Nanochannels ACS Applied Materials & Dopamine Modified Funnel Page Nanochannels Account Nanochannels Accou</i>	9.5	47
830	Ultrasmooth Quantum Dot Micropatterns by a Facile Controllable Liquid-Transfer Approach: Low-Cost Fabrication of High-Performance QLED. <i>Journal of the American Chemical Society</i> , 2018 , 140, 8690-8695	16.4	58
829	Regulated Dewetting for Patterning Organic Single Crystals with Pure Crystallographic Orientation toward High Performance Field-Effect Transistors. <i>Advanced Functional Materials</i> , 2018 , 28, 1800470	15.6	34
828	Bio-Inspired Superhydrophobic Closely Packed Aligned Nanoneedle Architectures for Enhancing Condensation Heat Transfer. <i>Advanced Functional Materials</i> , 2018 , 28, 1800634	15.6	52
827	Research Progress of Solvent-based Smart Actuator Materials. <i>Acta Chimica Sinica</i> , 2018 , 76, 425	3.3	11
826	In Situ Separation of Chemical Reaction Systems Based on a Special Wettable PTFE Membrane. <i>Advanced Functional Materials</i> , 2018 , 28, 1703970	15.6	32
825	Hydrogel with Ultrafast Self-Healing Property Both in Air and Underwater. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 1258-1265	9.5	141
824	Superhydrophobic Shape Memory Polymer Arrays with Switchable Isotropic/Anisotropic Wetting. <i>Advanced Functional Materials</i> , 2018 , 28, 1705002	15.6	120
823	Nonswellable hydrogels with robust micro/nano-structures and durable superoleophobic surfaces under seawater. <i>Science China Chemistry</i> , 2018 , 61, 64-70	7.9	18
822	Dramatic differences in the fluorescence of AIEgen-doped micro- and macrophase separated systems. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 171-177	7.1	14
821	Contact angle measurement of natural materials. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 161, 324-	-3 % 0	82
820	Solution Adsorption Formation of a Econjugated Polymer/Graphene Composite for High-Performance Field-Effect Transistors. <i>Advanced Materials</i> , 2018 , 30, 1705377	24	32
819	Biomimetic Peptide-Gated Nanoporous Membrane for On-Demand Molecule Transport. <i>Angewandte Chemie</i> , 2018 , 130, 157-161	3.6	12
818	Biomimetic Peptide-Gated Nanoporous Membrane for On-Demand Molecule Transport. Angewandte Chemie - International Edition, 2018 , 57, 151-155	16.4	29
817	Porous Films: Photoelectric Synergetic Responsive Slippery Surfaces Based on Tailored Anisotropic Films Generated by Interfacial Directional Freezing (Adv. Funct. Mater. 49/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870350	15.6	5
816	Graphene Sheets: Strong, Conductive, Foldable Graphene Sheets by Sequential Ionic and Bridging (Adv. Mater. 36/2018). <i>Advanced Materials</i> , 2018 , 30, 1870275	24	2
815	Effect of phosphorus content on mechanical properties of polymeric nickel composite materials with a diamond-structure microlattice <i>RSC Advances</i> , 2018 , 8, 33025-33029	3.7	3
814	Directional Droplet Propulsion on Gradient Boron Nitride Nanosheet Grid Surface Lubricated with a Vapor Film below the Leidenfrost Temperature. <i>ACS Nano</i> , 2018 , 12, 11995-12003	16.7	7

813	A Hydrophilic/Hydrophobic Janus Inverse-Opal Actuator via Gradient Infiltration. <i>ACS Nano</i> , 2018 , 12, 12149-12158	16.7	42	
812	In Situ Characterization of the Triphase Contact Line in a Brush-Coating Process: Toward the Enhanced Efficiency of Polymer Solar Cells. <i>ACS Applied Materials & Discounty of Polymer Solar Cells</i> . 10, 39448-39	4 <i>5</i> 4 ⁵	12	
811	High-speed transport of liquid droplets in magnetic tubular microactuators. <i>Science Advances</i> , 2018 , 4, eaau8767	14.3	42	
810	An Effective Dark-Vis-UV Ternary Biomimetic Switching Based on N3/Spiropyran-Modified Nanochannels. <i>Advanced Materials</i> , 2018 , 30, e1804862	24	28	
809	Simultaneous Monitoring of Mitochondrial Temperature and ATP Fluctuation Using Fluorescent Probes in Living Cells. <i>Analytical Chemistry</i> , 2018 , 90, 12553-12558	7.8	26	
808	A hierarchical hydrophilic/hydrophobic cooperative fog collector possessing self-pumped droplet delivering ability. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 20966-20972	13	56	
807	Ultrafast water harvesting and transport in hierarchical microchannels. <i>Nature Materials</i> , 2018 , 17, 935	-9 <u>4</u> 7	200	
806	Bandgap Engineering of Single-Crystalline Perovskite Arrays for High-Performance Photodetectors. <i>Advanced Functional Materials</i> , 2018 , 28, 1804349	15.6	42	
805	Continuous in Situ Extraction toward Multiphase Complex Systems Based on Superwettable Membrane with Micro-/Nanostructures. <i>ACS Nano</i> , 2018 , 12, 10000-10007	16.7	25	
804	Superaerophilic Materials Are Surprising Catalysts: Wettability-Induced Excellent Hydrogenation Activity under Ambient H2 Pressure. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1801259	4.6	11	
803	A Reliable Photoelectrochemical Bioassay System Based on Cathodic Reaction at a Solid[liquid]Air Joint Interface. <i>Advanced Functional Materials</i> , 2018 , 28, 1804410	15.6	21	
802	Unique ion rectification in hypersaline environment: A high-performance and sustainable power generator system. <i>Science Advances</i> , 2018 , 4, eaau1665	14.3	117	
801	Controlling Droplet Motion on an Organogel Surface by Tuning the Chain Length of DNA and Its Biosensing Application. <i>CheM</i> , 2018 , 4, 2929-2943	16.2	28	
800	Facile Self-templating Melting Route Preparation of Biomass-derived Hierarchical Porous Carbon for Advanced Supercapacitors. <i>Chemical Research in Chinese Universities</i> , 2018 , 34, 983-988	2.2	13	
799	Bacteriorhodopsin-Inspired Light-Driven Artificial Molecule Motors for Transmembrane Mass Transportation. <i>Angewandte Chemie</i> , 2018 , 130, 16950-16954	3.6	4	
798	Bacteriorhodopsin-Inspired Light-Driven Artificial Molecule Motors for Transmembrane Mass Transportation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16708-16712	16.4	22	
797	Dual-Programmable Shape-Morphing and Self-Healing Organohydrogels Through Orthogonal Supramolecular Heteronetworks. <i>Advanced Materials</i> , 2018 , 30, e1804435	24	60	
796	Light-Driven ATP Transmembrane Transport Controlled by DNA Nanomachines. <i>Journal of the American Chemical Society</i> , 2018 , 140, 16048-16052	16.4	51	

795	Self-Assembled Porphyrin Nanofiber Membrane-Decorated Alumina Channels for Enhanced Photoelectric Response. <i>ACS Nano</i> , 2018 , 12, 11169-11177	16.7	29
794	Drop Cargo Transfer via Unidirectional Lubricant Spreading on Peristome-Mimetic Surface. <i>ACS Nano</i> , 2018 , 12, 11307-11315	16.7	20
793	Preventing diatom adhesion using a hydrogel with an orthosilicic acid analog as a deceptive food. Journal of Materials Chemistry A, 2018 , 6, 19125-19132	13	13
792	Repairable cascaded slide-lock system endows bird feathers with tear-resistance and superdurability. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 10046-10051	11.5	16
791	Highly-sensitive optical organic vapor sensor through polymeric swelling induced variation of fluorescent intensity. <i>Nature Communications</i> , 2018 , 9, 3799	17.4	58
790	A universal tunable nanofluidic diode via photoresponsive hostīguest interactions. <i>NPG Asia Materials</i> , 2018 , 10, 849-857	10.3	23
789	Bioinspired Designs of Superhydrophobic and Superhydrophilic Materials. <i>ACS Central Science</i> , 2018 , 4, 1102-1112	16.8	166
788	A smart cyto-compatible asymmetric polypyrrole membrane for salinity power generation. <i>Nano Energy</i> , 2018 , 53, 475-482	17.1	35
787	Smart Liquid Transport on Dual Biomimetic Surface via Temperature Fluctuation Control. <i>Advanced Functional Materials</i> , 2018 , 28, 1707490	15.6	31
786	Skin-Inspired Low-Grade Heat Energy Harvesting Using Directed Ionic Flow through Conical Nanochannels. <i>Advanced Energy Materials</i> , 2018 , 8, 1800459	21.8	30
785	Simulation of osmotic energy conversion in nanoporous materials: a concise single-pore model. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 1677-1682	6.8	15
784	Bioinspired Underwater Superoleophobic Electrodes with Superior Kolbe Electrochemical Performances. <i>Advanced Functional Materials</i> , 2018 , 28, 1800712	15.6	9
783	Understanding the temperature-dependent charge transport, structural variation and photoluminescent properties in methylammonium lead halide perovskite single crystals. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 6556-6564	7.1	11
782	Controlled Growth of Patterned Conducting Polymer Microsuckers on Superhydrophobic Micropillar-Structured Templates. <i>Advanced Functional Materials</i> , 2018 , 28, 1800240	15.6	19
781	2D Prior Spreading Inspired from Chinese Xuan Papers. <i>Advanced Functional Materials</i> , 2018 , 28, 18008	32 5.6	15
78o	High-Performance Triphase Bio-Photoelectrochemical Assay System Based on Superhydrophobic Substrate-Supported TiO2 Nanowire Arrays. <i>Advanced Functional Materials</i> , 2018 , 28, 1801483	15.6	34
779	The Flexible Conical Lamella: A Bio-Inspired Open System for the Controllable Liquid Manipulation. <i>Advanced Functional Materials</i> , 2018 , 28, 1800187	15.6	12
778	Photoelectric Synergetic Responsive Slippery Surfaces Based on Tailored Anisotropic Films Generated by Interfacial Directional Freezing. <i>Advanced Functional Materials</i> , 2018 , 28, 1801310	15.6	41

Is Superhydrophobicity Equal to Underwater Superaerophilicity: Regulating the Gas Behavior on 777 Superaerophilic Surface via Hydrophilic Defects. ACS Applied Materials & Superaerophilic Surfaces, 2018, 10, 20995 25 1000 27 An Integrated Janus Mesh: Underwater Bubble Antibuoyancy Unidirectional Penetration. ACS Nano, 776 16.7 60 2018, 12, 5489-5494 Bioinspired Ionic Diodes: From Unipolar to Bipolar. Advanced Functional Materials, 2018, 28, 1801079 775 15.6 53 Bioinspired Superwettability Electrospun Micro/Nanofibers and Their Applications. Advanced 15.6 139 774 Functional Materials, 2018, 28, 1801114 Electrowetting-Induced Stiction Switch of a Microstructured Wire Surface for Unidirectional 15.6 773 15 Droplet and Bubble Motion. Advanced Functional Materials. 2018. 28, 1800775 Nanofluidic Ion Transport and Energy Conversion through Ultrathin Free-Standing Polymeric 16.4 113 Carbon Nitride Membranes. Angewandte Chemie - International Edition, 2018, 57, 10123-10126 Liquids Unidirectional Transport on Dual-Scale Arrays. ACS Nano, 2018, 12, 9214-9222 16.7 771 40 Integration of hydrogels with functional nanoparticles using hydrophobic comb-like polymers as an 13 20 adhesive layer. Journal of Materials Chemistry A, 2018, 6, 15147-15153 Superwettability Strategy: 1D Assembly of Binary Nanoparticles as Gas Sensors. Small, 2017, 13, 16010871 769 15 A Robust Cu(OH) Nanoneedles Mesh with Tunable Wettability for Nonaqueous Multiphase Liquid 768 11 65 Separation. Small, 2017, 13, 1600499 Self-Restoration of Superhydrophobicity on Shape Memory Polymer Arrays with Both Crushed 767 11 94 Microstructure and Damaged Surface Chemistry. Small, 2017, 13, 1503402 Introducing ion-transport-regulating nanochannels to lithium-sulfur batteries. Nano Energy, 2017, 766 17.1 47 33, 205-212 Anomalous Channel-Length Dependence in Nanofluidic Osmotic Energy Conversion. Advanced 765 15.6 88 Functional Materials, **2017**, 27, 1604302 Corrosion-Resistant Superhydrophobic Coatings on Mg Alloy Surfaces Inspired by Lotus Seedpod. 764 159 Advanced Functional Materials, 2017, 27, 1605446 Fish Gill Inspired Crossflow for Efficient and Continuous Collection of Spilled Oil. ACS Nano, 2017, 763 16.7 135 11, 2477-2485 Superior Fatique Resistant Bioinspired Graphene-Based Nanocomposite via Synergistic Interfacial 762 15.6 66 Interactions. Advanced Functional Materials, 2017, 27, 1605636 Corrosion Resistance: Corrosion-Resistant Superhydrophobic Coatings on Mg Alloy Surfaces 761 15.6 1 Inspired by Lotus Seedpod (Adv. Funct. Mater. 8/2017). Advanced Functional Materials, 2017, 27, Controlled formation of large-area single-crystalline TIPS-pentacene arrays through 760 20 7.1 superhydrophobic micropillar flow-coating. Journal of Materials Chemistry C, 2017, 5, 2702-2707

759	Oscillatory Reaction Induced Periodic C-Quadruplex DNA Gating of Artificial Ion Channels. <i>ACS Nano</i> , 2017 , 11, 3022-3029	16.7	62
758	Development of "Liquid-like" Copolymer Nanocoatings for Reactive Oil-Repellent Surface. <i>ACS Nano</i> , 2017 , 11, 2248-2256	16.7	87
757	In situ fastening graphene sheets into a polyurethane sponge for the highly efficient continuous cleanup of oil spills. <i>Nano Research</i> , 2017 , 10, 1756-1766	10	33
756	Dialectics of nature: Temporal and spatial regulation in material sciences. <i>Nano Research</i> , 2017 , 10, 111	516124	1 3
755	Bioinspired Smart Peristome Surface for Temperature-Controlled Unidirectional Water Spreading. <i>ACS Applied Materials & Distributed & Dist</i>	9.5	50
754	Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant. <i>Science Advances</i> , 2017 , 3, e1602188	14.3	140
753	A smart surface with switchable wettability by an ionic liquid. <i>Nanoscale</i> , 2017 , 9, 5822-5827	7.7	21
752	Lithography: Electrowetting-Induced Morphological Evolution of Metal-Organic Inverse Opals toward a Water-Lithography Approach (Adv. Funct. Mater. 7/2017). <i>Advanced Functional Materials</i> , 2017 , 27,	15.6	1
751	Crystallographically Aligned Perovskite Structures for High-Performance Polarization-Sensitive Photodetectors. <i>Advanced Materials</i> , 2017 , 29, 1605993	24	140
75°	Lubricant-Infused Anisotropic Porous Surface Design of Reduced Graphene Oxide Toward Electrically Driven Smart Control of Conductive Droplets' Motion. <i>Advanced Functional Materials</i> , 2017 , 27, 1606199	15.6	56
749	Electrokinetic Energy Conversion in Self-Assembled 2D Nanofluidic Channels with Janus Nanobuilding Blocks. <i>Advanced Materials</i> , 2017 , 29, 1700177	24	121
748	Unidirectional Wetting Properties on Multi-Bioinspired Magnetocontrollable Slippery Microcilia. <i>Advanced Materials</i> , 2017 , 29, 1606869	24	138
747	Cell adhesive spectra along surface wettability gradient from superhydrophilicity to superhydrophobicity. <i>Science China Chemistry</i> , 2017 , 60, 614-620	7.9	30
746	A novel reusable superhydrophilic NiO/Ni mesh produced by a facile fabrication method for superior oil/water separation. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10821-10826	13	83
745	High performance metal oxide based sensing device using an electrode with a solid/liquid/air triphase interface. <i>Nano Research</i> , 2017 , 10, 2998-3004	10	9
744	Improved Interfacial Floatability of Superhydrophobic/Superhydrophilic Janus Sheet Inspired by Lotus Leaf. <i>Advanced Functional Materials</i> , 2017 , 27, 1701466	15.6	106
743	Bioinspired Pollen-Like Hierarchical Surface for Efficient Recognition of Target Cancer Cells. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1700003	10.1	28
742	Perlmutt-Mimetika durch Ice-Templating. <i>Angewandte Chemie</i> , 2017 , 129, 954-955	3.6	2

(2017-2017)

741	Periodic oscillation of ion conduction of nanofluidic diodes using a chemical oscillator. <i>Nanoscale</i> , 2017 , 9, 7297-7304	7.7	14
740	Bioinspired Solid Organogel Materials with a Regenerable Sacrificial Alkane Surface Layer. <i>Advanced Materials</i> , 2017 , 29, 1700865	24	73
739	Sequential Recognition of Zinc and Pyrophosphate Ions in a Terpyridine-Functionalized Single Nanochannel. <i>ChemPhysChem</i> , 2017 , 18, 253-259	3.2	14
738	Facile Preparation of the Porous PDMS Oil-Absorbent for Oil/Water Separation. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1600862	4.6	97
737	Reliable manipulation of gas bubbles by regulating interfacial morphologies and chemical components. <i>Materials Horizons</i> , 2017 , 4, 665-672	14.4	25
736	A Tunable Ionic Diode Based on a Biomimetic Structure-Tailorable Nanochannel. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8168-8172	16.4	50
735	Fatigue Resistant Bioinspired Composite from Synergistic Two-Dimensional Nanocomponents. <i>ACS Nano</i> , 2017 , 11, 7074-7083	16.7	38
734	Simply realizing Water diodeDanus membranes for multifunctional smart applications. <i>Materials Horizons</i> , 2017 , 4, 701-708	14.4	151
733	A general strategy to synthesize chemically and topologically anisotropic Janus particles. <i>Science Advances</i> , 2017 , 3, e1603203	14.3	77
732	Adaptive and freeze-tolerant heteronetwork organohydrogels with enhanced mechanical stability over a wide temperature range. <i>Nature Communications</i> , 2017 , 8, 15911	17.4	175
731	Directing Stem Cell Differentiation via Electrochemical Reversible Switching between Nanotubes and Nanotips of Polypyrrole Array. <i>ACS Nano</i> , 2017 , 11, 5915-5924	16.7	69
730	A monolithic hydro/organo macro copolymer actuator synthesized via interfacial copolymerization. <i>NPG Asia Materials</i> , 2017 , 9, e380-e380	10.3	47
729	Healable green hydrogen bonded networks for circuit repair, wearable sensor and flexible electronic devices. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 13138-13144	13	64
728	A Tunable Ionic Diode Based on a Biomimetic Structure-Tailorable Nanochannel. <i>Angewandte Chemie</i> , 2017 , 129, 8280-8284	3.6	7
727	Manipulating Bubbles in Aqueous Environment via a Lubricant-Infused Slippery Surface. <i>Advanced Functional Materials</i> , 2017 , 27, 1701605	15.6	93
726	Synergistically toughening nacre-like graphene nanocomposites via gel-film transformation. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16386-16392	13	32
725	Foolproof Method for Fast and Reversible Switching of Water-Droplet Adhesion by Magnetic Gradients. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 23238-23245	9.5	27
724	Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion. Journal of the American Chemical Society, 2017, 139, 8905-8914	16.4	202

723	Membrane-Based Strategy for Efficient Ionic Liquids/Water Separation Assisted by Superwettability. <i>Advanced Functional Materials</i> , 2017 , 27, 1606544	15.6	39
722	Influence of temperature on the bending properties and failure mechanism of 3D needle-punched carbon/epoxy composites. <i>Fibers and Polymers</i> , 2017 , 18, 313-321	2	3
721	Photo-switchable two-dimensional nanofluidic ionic diodes. <i>Chemical Science</i> , 2017 , 8, 4381-4386	9.4	37
720	Superamphiphilic Silicon Wafer Surfaces and Applications for Uniform Polymer Film Fabrication. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 5720-5724	16.4	35
719	Superamphiphilic Silicon Wafer Surfaces and Applications for Uniform Polymer Film Fabrication. <i>Angewandte Chemie</i> , 2017 , 129, 5814-5818	3.6	10
718	Uni-directional liquid spreading control on a bio-inspired surface from the peristome of Nepenthes alata. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 6914-6920	13	46
717	Wettability with Aggregation-Induced Emission Luminogens. <i>Macromolecular Rapid Communications</i> , 2017 , 38, 1700041	4.8	2
716	Dual-Phase Transformation: Spontaneous Self-Template Surface-Patterning Strategy for Ultra-transparent VO Solar Modulating Coatings. <i>ACS Nano</i> , 2017 , 11, 407-415	16.7	65
715	Electrowetting-Induced Morphological Evolution of Metal-Organic Inverse Opals toward a Water-Lithography Approach. <i>Advanced Functional Materials</i> , 2017 , 27, 1605221	15.6	25
714	Mimicking Nacre by Ice Templating. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 934-935	16.4	20
713	Preparation of High-Performance Ionogels with Excellent Transparency, Good Mechanical Strength, and High Conductivity. <i>Advanced Materials</i> , 2017 , 29, 1704253	24	207
712	Tunable, Fast, Robust Hydrogel Actuators Based on Evaporation-Programmed Heterogeneous Structures. <i>Chemistry of Materials</i> , 2017 , 29, 9793-9801	9.6	73
711	3D Porous Hydrogel/Conducting Polymer Heterogeneous Membranes with Electro-/pH-Modulated Ionic Rectification. <i>Advanced Materials</i> , 2017 , 29, 1702926	24	46
710	Bioinspired Dynamic Wetting on Multiple Fibers. <i>Advanced Materials</i> , 2017 , 29, 1703042	24	29
709	Morphology-Control Strategy of the Superhydrophobic Poly(Methyl Methacrylate) Surface for Efficient Bubble Adhesion and Wastewater Remediation. <i>Advanced Functional Materials</i> , 2017 , 27, 1702	20 ¹² 50 ⁶	45
708	First-Principles Screening of Lead-Free Methylammonium Metal Iodine Perovskites for Photovoltaic Application. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 24359-24364	3.8	19
707	A Charge-Density-Tunable Three/Two-Dimensional Polymer/Graphene Oxide Heterogeneous Nanoporous Membrane for Ion Transport. <i>ACS Nano</i> , 2017 , 11, 10816-10824	16.7	64
706	Antiadhesion Organogel Materials: From Liquid to Solid. <i>Advanced Materials</i> , 2017 , 29, 1703032	24	49

(2017-2017)

705	Large-Scale, Long-Range-Ordered Patterning of Nanocrystals via Capillary-Bridge Manipulation. <i>Advanced Materials</i> , 2017 , 29, 1703143	24	47
704	N3/Al2O3 composite nanochannels: photoelectric and photoelectric-and-pH cooperatively controlled ion gating. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 19220-19226	13	13
703	Enhanced Photocatalytic Reaction at Air-Liquid-Solid Joint Interfaces. <i>Journal of the American Chemical Society</i> , 2017 , 139, 12402-12405	16.4	123
702	Infused-liquid-switchable porous nanofibrous membranes for multiphase liquid separation. <i>Nature Communications</i> , 2017 , 8, 575	17.4	107
701	Peristome-Mimetic Curved Surface for Spontaneous and Directional Separation of Micro Water-in-Oil Drops. <i>Angewandte Chemie</i> , 2017 , 129, 13811-13816	3.6	14
700	Superwettability of Gas Bubbles and Its Application: From Bioinspiration to Advanced Materials. <i>Advanced Materials</i> , 2017 , 29, 1703053	24	94
699	Biphasic Synergistic Gel Materials with Switchable Mechanics and Self-Healing Capacity. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 13464-13469	16.4	73
698	Peristome-Mimetic Curved Surface for Spontaneous and Directional Separation of Micro Water-in-Oil Drops. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 13623-13628	16.4	58
697	Biphasic Synergistic Gel Materials with Switchable Mechanics and Self-Healing Capacity. <i>Angewandte Chemie</i> , 2017 , 129, 13649-13654	3.6	13
696	Nanofluidics in two-dimensional layered materials: inspirations from nature. <i>Chemical Society Reviews</i> , 2017 , 46, 5400-5424	58.5	154
695	Directional Solution Coating by the Chinese Brush: A Facile Approach to Improving Molecular Alignment for High-Performance Polymer TFTs. <i>Advanced Materials</i> , 2017 , 29, 1606987	24	58
694	Desert Beetle-Inspired Superwettable Patterned Surfaces for Water Harvesting. Small, 2017, 13, 17014	1600	110
693	Capillary-Bridge Mediated Assembly of Conjugated Polymer Arrays toward Organic Photodetectors. <i>Advanced Functional Materials</i> , 2017 , 27, 1701347	15.6	43
692	Reducing the contact time using macro anisotropic superhydrophobic surfaces leffect of parallel wire spacing on the drop impact. <i>NPG Asia Materials</i> , 2017 , 9, e415-e415	10.3	52
691	Bioinspired Energy Conversion in Nanofluidics: A Paradigm of Material Evolution. <i>Advanced Materials</i> , 2017 , 29, 1702773	24	78
690	Surface Charge-Induced Efficient Recovery of Ionic Liquids from Aqueous Phase. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 29355-29362	9.5	13
689	Closed Pore Structured NiCoO-Coated Nickel Foams for Stable and Effective Oil/Water Separation.		42
	ACS Applied Materials & Description of the ACS Applied Materials & D	9.5	43
688		9.5	43

687	Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separation. <i>Nature Communications</i> , 2017 , 8, 2011	17.4	130
686	On the Origin of Ionic Rectification in DNA-Stuffed Nanopores: The Breaking and Retrieving Symmetry. <i>Journal of the American Chemical Society</i> , 2017 , 139, 18739-18746	16.4	66
685	Thermochromic Artificial Nacre Based on Montmorillonite. <i>ACS Applied Materials & Description</i> , 9, 24993-24998	9.5	21
684	Fabrication of robust mesh with anchored Ag nanoparticles for oil removal and in situ catalytic reduction of aromatic dyes. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 15822-15827	13	47
683	Robust Bioinspired Graphene Film via ECross-linking. <i>ACS Applied Materials & Description</i> , 9, 24987-24992	9.5	40
682	Nature-inspired superwettability systems. <i>Nature Reviews Materials</i> , 2017 , 2,	73.3	802
681	Boosting Gas Involved Reactions at Nanochannel Reactor with Joint Gas-Solid-Liquid Interfaces and Controlled Wettability. <i>Journal of the American Chemical Society</i> , 2017 , 139, 10441-10446	16.4	54
680	"Capillary-Bridge Lithography" for Patterning Organic Crystals toward Mode-Tunable Microlaser Arrays. <i>Advanced Materials</i> , 2017 , 29, 1603652	24	77
679	Interfacial Engineering of Hierarchically Porous NiTi/Hydrogels Nanocomposites with Exceptional Antibiofouling Surfaces. <i>Advanced Materials</i> , 2017 , 29, 1602869	24	42
678	Superlyophilicity-Facilitated Synthesis Reaction at the Microscale: Ordered Graphdiyne Stripe Arrays. <i>Small</i> , 2017 , 13, 1602265	11	49
677	Bioinspired robust nanocomposites of cooper ions and hydroxypropyl cellulose synergistic toughening graphene oxide. <i>Science China Technological Sciences</i> , 2017 , 60, 758-764	3.5	23
676	Atomically Thin Hexagonal Boron Nitride Nanofilm for Cu Protection: The Importance of Film Perfection. <i>Advanced Materials</i> , 2017 , 29, 1603937	24	49
675	Superaerophobic RuO -Based Nanostructured Electrode for High-Performance Chlorine Evolution Reaction. <i>Small</i> , 2017 , 13, 1602240	11	55
674	An Artificial CO -Driven Ionic Gate Inspired by Olfactory Sensory Neurons in Mosquitoes. <i>Advanced Materials</i> , 2017 , 29, 1603884	24	49
673	Osmotic Power Generation with Positively and Negatively Charged 2D Nanofluidic Membrane Pairs. <i>Advanced Functional Materials</i> , 2017 , 27, 1603623	15.6	209
672	Highly Boosted Oxygen Reduction Reaction Activity by Tuning the Underwater Wetting State of the Superhydrophobic Electrode. <i>Small</i> , 2017 , 13, 1601250	11	62
671	A Novel Bioinspired Continuous Unidirectional Liquid Spreading Surface Structure from the Peristome Surface of Nepenthes alata. <i>Small</i> , 2017 , 13, 1601676	11	71
670	Covalent tethering of photo-responsive superficial layers on hydrogel surfaces for photo-controlled release. <i>Chemical Science</i> , 2017 , 8, 2010-2016	9.4	29

(2016-2017)

669	Surface engineering of nanoparticles for triggering collective properties of supercrystals. <i>National Science Review</i> , 2017 , 4, 672-677	10.8	10
668	Recent Progress in Bionic Condensate Microdrop Self-Propelling Surfaces. <i>Advanced Materials</i> , 2017 , 29, 1703002	24	71
667	Polypyrrole Whelk-Like Arrays toward Robust Controlling Manipulation of Organic Droplets Underwater. <i>Small</i> , 2017 , 13, 1701938	11	9
666	Direct Imaging of Superwetting Behavior on Solid-Liquid-Vapor Triphase Interfaces. <i>Advanced Materials</i> , 2017 , 29, 1703009	24	8
665	Water-Repellent Properties of Superhydrophobic and Lubricant-Infused "Slippery" Surfaces: A Brief Study on the Functions and Applications. <i>ACS Applied Materials & District Materials</i> (1998) 8, 3615-23	9.5	164
664	Facile Fabrication of a Polyethylene Mesh for Oil/Water Separation in a Complex Environment. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 1, 24186-91	9.5	62
663	Hydroactuated Configuration Alteration of Fibrous Dandelion Pappi: Toward Self-Controllable Transport Behavior. <i>Advanced Functional Materials</i> , 2016 , 26, 7378-7385	15.6	15
662	Plug-and-GoEType Liquid Diode: Integrated Mesh with Janus Superwetting Properties. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600276	4.6	30
661	Surface Wettability Switched Cell Adhesion and Detachment on Conducting Polymer Nanoarray. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600598	4.6	26
660	Slippery Surfaces: Anisotropic Slippery Surfaces: Electric-Driven Smart Control of a Drop's Slide (Adv. Mater. 32/2016). <i>Advanced Materials</i> , 2016 , 28, 6770-6770	24	3
659	Comment on "A bacterium that degrades and assimilates poly(ethylene terephthalate)". <i>Science</i> , 2016 , 353, 759	33.3	27
658	Superhydrophobic Cones for Continuous Collection and Directional Transportation of CO Microbubbles in CO Supersaturated Solutions. <i>ACS Nano</i> , 2016 , 10, 10887-10893	16.7	42
657	Supramolecular Self-Assembly Induced Adjustable Multiple Gating States of Nanofluidic Diodes. Journal of the American Chemical Society, 2016 , 138, 16372-16379	16.4	55
656	Asymmetric Multifunctional Heterogeneous Membranes for pH- and Temperature-Cooperative Smart Ion Transport Modulation. <i>Advanced Materials</i> , 2016 , 28, 9613-9619	24	61
655	Superspreading-Based Fabrication of Asymmetric Porous PAA-g-PVDF Membranes for Efficient Water Flow Gating. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600615	4.6	12
654	Superwettability integration: concepts, design and applications. Surface Innovations, 2016, 4, 180-194	1.9	41
653	Biomimetic Nanofluidic Diode Composed of Dual Amphoteric Channels Maintains Rectification Direction over a Wide pH Range. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 13056-13060	16.4	31
652	Uni-Directional Transportation on Peristome-Mimetic Surfaces for Completely Wetting Liquids. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 14988-14992	16.4	101

651	Superhydrophobic Surface With Shape Memory Micro/Nanostructure and Its Application in Rewritable Chip for Droplet Storage. <i>ACS Nano</i> , 2016 , 10, 9379-9386	16.7	110
650	Photoelectric Frequency Response in a Bioinspired Bacteriorhodopsin/Alumina Nanochannel Hybrid Nanosystem. <i>Advanced Materials</i> , 2016 , 28, 9851-9856	24	19
649	Recycled Superwetting Nanostructured Copper Mesh Film: Toward Bidirectional Separation of Emulsified Oil/Water Mixtures. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600370	4.6	34
648	A strong, underwater superoleophobic PNIPAMīday nanocomposite hydrogel. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 12884-12888	13	49
647	Robust Anti-Icing Performance of a Flexible Superhydrophobic Surface. <i>Advanced Materials</i> , 2016 , 28, 7729-35	24	318
646	Dynamic Self-Assembly Adhesion of a Paraquat Droplet on a Pillar[5]arene Surface. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12713-6	16.4	55
645	Bioinspired Graphene-Based Nanocomposites and Their Application in Flexible Energy Devices. <i>Advanced Materials</i> , 2016 , 28, 7862-7898	24	159
644	Electric Field Induced Switchable Wettability to Water on the Polyaniline Membrane and Oil/Water Separation. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600461	4.6	109
643	Fluoral-p infiltrated SiO2 inverse opal photonic crystals as fluorescent film sensors for detecting formaldehyde vapor. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 9841-9847	7.1	23
642	Light-Controlled Ion Transport through Biomimetic DNA-Based Channels. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 15637-15641	16.4	78
641	New conceptual microfluidics technology: light manipulation of liquid slugs in liquid crystal polymer microactuators. <i>Science China Materials</i> , 2016 , 59, 997-999	7.1	2
640	Directional Motion: Electric Field and Gradient Microstructure for Cooperative Driving of Directional Motion of Underwater Oil Droplets (Adv. Funct. Mater. 44/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 8148-8148	15.6	2
639	"Uphill" cation transport: A bioinspired photo-driven ion pump. <i>Science Advances</i> , 2016 , 2, e1600689	14.3	51
638	Superhydrophilic Coating Induced Temporary Conductivity for Low-Cost Coating and Patterning of Insulating Surfaces. <i>Advanced Functional Materials</i> , 2016 , 26, 9018-9025	15.6	17
637	Diamond-structured hollow-tube lattice Ni materials via 3D printing. <i>Science China Chemistry</i> , 2016 , 59, 1632-1637	7.9	6
636	Bio-inspired photonic crystals with superwettability. <i>Chemical Society Reviews</i> , 2016 , 45, 6833-6854	58.5	129
635	Recycling of PE glove waste as highly valuable products for efficient separation of oil-based contaminants from water. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 18128-18133	13	20
634	Magnetic field-guided directional rebound of a droplet on a superhydrophobic flexible needle surface. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 18289-18293	13	30

(2016-2016)

633	3D Dewetting for Crystal Patterning: Toward Regular Single-Crystalline Belt Arrays and Their Functionality. <i>Advanced Materials</i> , 2016 , 28, 2266-73	24	53
632	"Liquid Knife" to Fabricate Patterning Single-Crystalline Perovskite Microplates toward High-Performance Laser Arrays. <i>Advanced Materials</i> , 2016 , 28, 3732-41	24	118
631	Ultrastrong Bioinspired Graphene-Based Fibers via Synergistic Toughening. <i>Advanced Materials</i> , 2016 , 28, 2834-9	24	92
630	Anisotropic Slippery Surfaces: Electric-Driven Smart Control of a Drop's Slide. <i>Advanced Materials</i> , 2016 , 28, 6999-7007	24	93
629	Superspreading on Immersed Gel Surfaces for the Confined Synthesis of Thin Polymer Films. <i>Angewandte Chemie</i> , 2016 , 128, 3679-3683	3.6	9
628	A Co3O4 nano-needle mesh for highly efficient, high-flux emulsion separation. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 12014-12019	13	87
627	A robust double-network hydrogel with under sea water superoleophobicity fabricated via one-pot, one-step reaction. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 4662-4666	7.3	22
626	Highly Efficient Fog Collection Unit by Integrating Artificial Spider Silks. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500831	4.6	25
625	Superspreading on Immersed Gel Surfaces for the Confined Synthesis of Thin Polymer Films. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 3615-9	16.4	41
624	Four-Dimensional Screening Anti-Counterfeiting Pattern by Inkjet Printed Photonic Crystals. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 2680-2685	4.5	59
623	High-strain-rate compression behavior and failure mechanism of 3D MWK carbon/epoxy composites. <i>High Performance Polymers</i> , 2016 , 28, 479-491	1.6	4
622	Experimental study on the bending properties and failure mechanism of 3D multi-axial warp knitted composites at room and liquid nitrogen temperatures. <i>Journal of Composite Materials</i> , 2016 , 50, 557-571	2.7	10
621	Porous Core-Shell Fe3C Embedded N-doped Carbon Nanofibers as an Effective Electrocatalysts for Oxygen Reduction Reaction. <i>ACS Applied Materials & Englishing Company </i>	9.5	210
620	Biomimetic smart nanochannels for power harvesting. <i>Nano Research</i> , 2016 , 9, 59-71	10	39
619	Hybrid Top-Down/Bottom-Up Strategy Using Superwettability for the Fabrication of Patterned Colloidal Assembly. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 4985-93	9.5	19
618	Simultaneous synthesis/assembly of anisotropic cake-shaped porphyrin particles toward colloidal microcrystals. <i>Chemical Communications</i> , 2016 , 52, 3619-22	5.8	7
617	Bioinspired Interfaces with Superwettability: From Materials to Chemistry. <i>Journal of the American Chemical Society</i> , 2016 , 138, 1727-48	16.4	720
616	Colloidal Synthesis of Lettuce-like Copper Sulfide for Light-Gating Heterogeneous Nanochannels. <i>ACS Nano</i> , 2016 , 10, 3606-13	16.7	25

615	Nacre-inspired integrated strong and tough reduced graphene oxide-poly(acrylic acid) nanocomposites. <i>Nanoscale</i> , 2016 , 8, 5649-56	7.7	95
614	Opposite and complementary: a superhydrophobic uperhydrophilic integrated system for high-flux, high-efficiency and continuous oil/water separation. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4365-4370	13	73
613	Bio-inspired flexible fiber brushes that keep liquids in a controlled manner by closing their ends. <i>NPG Asia Materials</i> , 2016 , 8, e241-e241	10.3	9
612	Hydrophilicity boosted extracellular electron transfer in Shewanella loihica PV-4. <i>RSC Advances</i> , 2016 , 6, 22488-22493	3.7	10
611	Instability of Liquids in Flexible Fiber Brushes under Applied Pressure. <i>Langmuir</i> , 2016 , 32, 3262-8	4	7
610	Construction and application of photoresponsive smart nanochannels. <i>Journal of Photochemistry and Photobiology C: Photochemistry Reviews</i> , 2016 , 26, 31-47	16.4	39
609	Hierarchical Nanowire Arrays as Three-Dimensional Fractal Nanobiointerfaces for High Efficient Capture of Cancer Cells. <i>Nano Letters</i> , 2016 , 16, 766-72	11.5	109
608	Robust Thermoresponsive Polymer Composite Membrane with Switchable Superhydrophilicity and Superhydrophobicity for Efficient Oil-Water Separation. <i>Environmental Science & amp; Technology</i> , 2016 , 50, 906-14	10.3	156
607	Fundamental studies and practical applications of bio-inspired smart solid-state nanopores and nanochannels. <i>Nano Today</i> , 2016 , 11, 61-81	17.9	203
606	Bio-inspired multifunctional metallic glass. <i>Science China Chemistry</i> , 2016 , 59, 271-276	7.9	7
605	Hierarchical Layered Heterogeneous Graphene-poly(N-isopropylacrylamide)-clay Hydrogels with Superior Modulus, Strength, and Toughness. <i>ACS Nano</i> , 2016 , 10, 413-20	16.7	51
604	A Dewetting-Induced Assembly Strategy for Precisely Patterning Organic Single Crystals in OFETs. <i>ACS Applied Materials & Description (Communication)</i> ACS Applied Materials & Description (Communication) ACS Applied (Communication) ACS	9.5	16
603	Highly Conductive, Air-Stable Silver Nanowire@Iongel Composite Films toward Flexible Transparent Electrodes. <i>Advanced Materials</i> , 2016 , 28, 7167-72	24	163
602	Superhydrophobic Diffusion Barriers for Hydrogels via Confined Interfacial Modification. <i>Advanced Materials</i> , 2016 , 28, 7383-9	24	41
601	Engineered Asymmetric Composite Membranes with Rectifying Properties. <i>Advanced Materials</i> , 2016 , 28, 757-63	24	29
600	Static and dynamic mechanical behavior of 3D integrated woven spacer composites with thickened face sheets. <i>Fibers and Polymers</i> , 2016 , 17, 460-468	2	10
599	Oxygen-Rich Enzyme Biosensor Based on Superhydrophobic Electrode. <i>Advanced Materials</i> , 2016 , 28, 1477-81	24	102
598	Experimental study on the mechanical behavior and failure mechanism of 3d MWK carbon/epoxy composites under quasi-static loading. <i>Polymer Composites</i> , 2016 , 37, 3486-3498	3	3

(2016-2016)

597	Electrospun Multiscale Structured Membrane for Efficient Water Collection and Directional Transport. <i>Small</i> , 2016 , 12, 1000-5	11	48
596	Biomimetic Solid-State Nanochannels: From Fundamental Research to Practical Applications. <i>Small</i> , 2016 , 12, 2810-31	11	108
595	Superaerophilic Carbon-Nanotube-Array Electrode for High-Performance Oxygen Reduction Reaction. <i>Advanced Materials</i> , 2016 , 28, 7155-61	24	159
594	Bioinspired 1D Superparamagnetic Magnetite Arrays with Magnetic Field Perception. <i>Advanced Materials</i> , 2016 , 28, 6952-8	24	38
593	Guided Self-Propelled Leaping of Droplets on a Micro-Anisotropic Superhydrophobic Surface. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 4265-9	16.4	108
592	Adenosine-Activated Nanochannels Inspired by G-Protein-Coupled Receptors. <i>Small</i> , 2016 , 12, 1854-8	11	21
591	Stable slippery liquid-infused anti-wetting surface at high temperatures. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 12212-12220	13	47
590	Mechanical Properties of Diamond-Structured Polymer Microlattices Coated with the Silicon Nitride Film. <i>Advanced Engineering Materials</i> , 2016 , 18, 236-240	3.5	13
589	Spontaneous and Directional Transportation of Gas Bubbles on Superhydrophobic Cones. <i>Advanced Functional Materials</i> , 2016 , 26, 3236-3243	15.6	124
588	Stretchable-Fiber-Confined Wetting Conductive Liquids as Wearable Human Health Monitors. <i>Advanced Functional Materials</i> , 2016 , 26, 4511-4517	15.6	67
587	A Biomimetic Voltage-Gated Chloride Nanochannel. Advanced Materials, 2016, 28, 3181-6	24	62
586	Enhanced Stability and Controllability of an Ionic Diode Based on Funnel-Shaped Nanochannels with an Extended Critical Region. <i>Advanced Materials</i> , 2016 , 28, 3345-50	24	80
585	Guided Self-Propelled Leaping of Droplets on a Micro-Anisotropic Superhydrophobic Surface. <i>Angewandte Chemie</i> , 2016 , 128, 4337-4341	3.6	25
584	Science behind nacre: matrix-directed mineralization at ambient condition. <i>Science China Materials</i> , 2016 , 59, 889-891	7.1	4
583	Multiphase Media Antiadhesive Coatings: Hierarchical Self-Assembled Porous Materials Generated Using Breath Figure Patterns. <i>ACS Nano</i> , 2016 , 10, 11087-11095	16.7	64
582	Titelbild: Uni-Directional Transportation on Peristome-Mimetic Surfaces for Completely Wetting Liquids (Angew. Chem. 48/2016). <i>Angewandte Chemie</i> , 2016 , 128, 15097-15097	3.6	2
581	Light-Controlled Ion Transport through Biomimetic DNA-Based Channels. <i>Angewandte Chemie</i> , 2016 , 128, 15866-15870	3.6	15
580	Coatings: Superhydrophilic Coating Induced Temporary Conductivity for Low-Cost Coating and Patterning of Insulating Surfaces (Adv. Funct. Mater. 48/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 9017-9017	15.6	3

579	Separation of organic liquid mixture by flexible nanofibrous membranes with precisely tunable wettability. <i>NPG Asia Materials</i> , 2016 , 8, e334-e334	10.3	50
578	Wettability by Ionic Liquids. <i>Small</i> , 2016 , 12, 9-15	11	20
577	Continuous directional water transport on the peristome surface of Nepenthes alata. <i>Nature</i> , 2016 , 532, 85-9	50.4	580
576	Patterning liquids on inkjet-imprinted surfaces with highly adhesive superhydrophobicity. Nanoscale, 2016 , 8, 9556-62	7.7	26
575	Single-material solvent-sensitive actuator from poly(ionic liquid) inverse opals based on gradient dewetting. <i>Chemical Communications</i> , 2016 , 52, 5924-7	5.8	32
574	Biomimetic heterogeneous multiple ion channels: a honeycomb structure composite film generated by breath figures. <i>Nanoscale</i> , 2016 , 8, 12318-23	7.7	29
573	Fabrication and ionic transportation characterization of funnel-shaped nanochannels. <i>RSC Advances</i> , 2016 , 6, 55064-55070	3.7	12
572	Fast Responsive and Controllable Liquid Transport on a Magnetic Fluid/Nanoarray Composite Interface. <i>ACS Nano</i> , 2016 , 10, 6220-6	16.7	113
571	Facile One-Step Strategy for Highly Boosted Microbial Extracellular Electron Transfer of the Genus Shewanella. <i>ACS Nano</i> , 2016 , 10, 6331-7	16.7	11
570	Fabrication of a mercaptoacetic acid pillar[5]arene assembled nanochannel: a biomimetic gate for mercury poisoning. <i>Chemical Science</i> , 2016 , 7, 3227-3233	9.4	88
569	Graphene-based artificial nacre nanocomposites. Chemical Society Reviews, 2016, 45, 2378-95	58.5	194
568	A Bioinspired Multifunctional Heterogeneous Membrane with Ultrahigh Ionic Rectification and Highly Efficient Selective Ionic Gating. <i>Advanced Materials</i> , 2016 , 28, 144-50	24	148
567	Bioinspired Ternary Artificial Nacre Nanocomposites Based on Reduced Graphene Oxide and Nanofibrillar Cellulose. <i>ACS Applied Materials & District Research</i> , 8, 10545-50	9.5	84
566	Dialectics of nature in materials science: binary cooperative complementary materials. <i>Science China Materials</i> , 2016 , 59, 239-246	7.1	51
565	Natural tea-leaf-derived, ternary-doped 3D porous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. <i>Nano Research</i> , 2016 , 9, 1244-1255	10	48
564	Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with coreIheath structures for superior microwave absorption. <i>Nano Research</i> , 2016 , 9, 2034-2045	10	111
563	Superwettability-Induced Confined Reaction toward High-Performance Flexible Electrodes. <i>ACS Applied Materials & District Materials & D</i>	9.5	8
562	Electric Field and Gradient Microstructure for Cooperative Driving of Directional Motion of Underwater Oil Droplets. <i>Advanced Functional Materials</i> , 2016 , 26, 7986-7992	15.6	46

(2015-2016)

561	China rose-derived tri-heteroatom co-doped porous carbon as an efficient electrocatalysts for oxygen reduction reaction. <i>RSC Advances</i> , 2016 , 6, 86401-86409	3.7	10
560	Dynamic Self-Assembly Adhesion of a Paraquat Droplet on a Pillar[5]arene Surface. <i>Angewandte Chemie</i> , 2016 , 128, 12905-12908	3.6	19
559	Superhydrophobic helix: controllable and directional bubble transport in an aqueous environment. Journal of Materials Chemistry A, 2016 , 4, 16865-16870	13	42
558	Nanodroplets for Stretchable Superconducting Circuits. <i>Advanced Functional Materials</i> , 2016 , 26, 8111-	814&	101
557	In situ dual-functional water purification with simultaneous oil removal and visible light catalysis. <i>Nanoscale</i> , 2016 , 8, 18558-18564	7.7	35
556	Robust bioinspired graphene-based nanocomposites via synergistic toughening of zinc ions and covalent bonding. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17073-17079	13	35
555	A strong and highly flexible aramid nanofibers/PEDOT:PSS film for all-solid-state supercapacitors with superior cycling stability. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17324-17332	13	80
554	Biomimetic Nanofluidic Diode Composed of Dual Amphoteric Channels Maintains Rectification Direction over a Wide pH Range. <i>Angewandte Chemie</i> , 2016 , 128, 13250-13254	3.6	5
553	Uni-Directional Transportation on Peristome-Mimetic Surfaces for Completely Wetting Liquids. <i>Angewandte Chemie</i> , 2016 , 128, 15212-15216	3.6	4
552	Electrostatic-Charge- and Electric-Field-Induced Smart Gating for Water Transportation. <i>ACS Nano</i> , 2016 , 10, 9703-9709	16.7	45
551	Top-Pinning Controlled Dewetting for Fabrication of Large-Scaled Polymer Microwires and Applications in OFETs. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600111	6.4	9
550	Robust Underwater Oil-Repellent Material Inspired by Columnar Nacre. <i>Advanced Materials</i> , 2016 , 28, 8505-8510	24	81
549	Aerophilic Electrode with Cone Shape for Continuous Generation and Efficient Collection of H2 Bubbles. <i>Advanced Functional Materials</i> , 2016 , 26, 6830-6835	15.6	48
548	Nanoengineering to Achieve High Sodium Storage: A Case Study of Carbon Coated Hierarchical Nanoporous TiO Microfibers. <i>Advanced Science</i> , 2016 , 3, 1600013	13.6	39
547	Bioinspired super-wettability from fundamental research to practical applications. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 3387-99	16.4	520
546	Chiral recognition of L-tryptophan with beta-cyclodextrin-modified biomimetic single nanochannel. <i>Chemical Communications</i> , 2015 , 51, 3135-8	5.8	95
545	Wettability-Regulated Extracellular Electron Transfer from the Living Organism of Shewanella loihica PV-4. <i>Angewandte Chemie</i> , 2015 , 127, 1466-1471	3.6	10
544	Temperature-controlled morphology evolution of porphyrin nanostructures at an oil queous interface. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 2445-2449	7.1	11

543	Bioinspired highly electrically conductive graphenellpoxy layered composites. <i>RSC Advances</i> , 2015 , 5, 22283-22288	3.7	26
542	Bioinspired gas bubble spontaneous and directional transportation effects in an aqueous medium. <i>Advanced Materials</i> , 2015 , 27, 2384-9	24	41
541	Fabrication, properties and failure of 3D integrated woven spacer composites with thickened face sheets. <i>Materials Letters</i> , 2015 , 148, 103-105	3.3	19
540	Conductive Polymer Porous Film with Tunable Wettability and Adhesion. <i>Materials</i> , 2015 , 8, 1817-1830	3.5	16
539	Bioinspired Lotus-like Self-Illuminous Coating. ACS Applied Materials & amp; Interfaces, 2015, 7, 18424-8	9.5	16
538	Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications. <i>Chemical Reviews</i> , 2015 , 115, 8230-93	68.1	1006
537	Fluoride responsive single nanochannel: click fabrication and highly selective sensing in aqueous solution. <i>Chemical Science</i> , 2015 , 6, 5859-5865	9.4	61
536	Experimental study on the charpy impact failure of 3D integrated woven spacer composite at room and liquid nitrogen temperature. <i>Fibers and Polymers</i> , 2015 , 16, 875-882	2	11
535	Self-removal of condensed water on the legs of water striders. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 9247-52	11.5	141
534	Bio-inspired humidity responsive switch for directional water droplet delivery. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 15540-15545	13	34
533	Manipulating Overflow Separation Directions by Wettability Boundary Positions. ACS Nano, 2015, 9, 659	9 5 66 9 02	26
532	Under-water unidirectional air penetration via a Janus mesh. Chemical Communications, 2015, 51, 11872	2-5 .8	76
531	A DAA type dye for highly efficient dye-sensitized solar cells. <i>RSC Advances</i> , 2015 , 5, 37574-37580	3.7	10
530	Photothermal-Responsive Single-Walled Carbon Nanotube-Based Ultrathin Membranes for On/Off Switchable Separation of Oil-in-Water Nanoemulsions. <i>ACS Nano</i> , 2015 , 9, 4835-42	16.7	213
529	Learning from nature: constructing integrated graphene-based artificial nacre. ACS Nano, 2015, 9, 2231	-4 6.7	142
528	Fabrication of Patterned Concave Microstructures by Inkjet Imprinting. <i>Advanced Functional Materials</i> , 2015 , 25, 3286-3294	15.6	53
527	Bioinspired Hierarchical Alumina-Graphene Oxide-Poly(vinyl alcohol) Artificial Nacre with Optimized Strength and Toughness. <i>ACS Applied Materials & Description of the Poly (vinyl alcohol) Artificial Nacre with Optimized Strength and Toughness (vinyl alcohol) Artificial Nacre with Optimized Strength and Toughness (vinyl alcohol) Artificial Nacre with Optimized Strength and Toughness (vinyl alcohol) Artificial Nacre with Optimized Strength and Toughness (vinyl alcohol) Artificial Nacre with Optimized Strength and Toughness (vinyl alcohol) Artificial Nacre with Optimized Strength and Toughness (vinyl alcohol) Artificial Nacre with Optimized Strength and Toughness (vinyl alcohol) Artificial Nacre with Optimized Strength and Toughness (vinyl alcohol) Artificial Nacre with Optimized Strength and Toughness (vinyl alcohol) Artificial Nacre with Optimized Strength and Toughness (vinyl alcohol) Artificial Nacre with Optimized Strength (vinyl alcohol) Artificial Nacre with Optimized Strength (vinyl alcohol) Artificial Nacre with Optimized Strength (vinyl alcohol) Artificial Nacre with Optimized Nacre with Optimized</i>	9.5	72
526	DNAzyme tunable lead(II) gating based on ion-track etched conical nanochannels. <i>Chemical Communications</i> , 2015 , 51, 5979-81	5.8	42

525	Positioning and joining of organic single-crystalline wires. <i>Nature Communications</i> , 2015 , 6, 6737	17.4	72
524	Bio-inspired direct patterning functional nanothin microlines: controllable liquid transfer. <i>ACS Nano</i> , 2015 , 9, 4362-70	16.7	20
523	Controllable Fabrication of Noniridescent Microshaped Photonic Crystal Assemblies by Dynamic Three-Phase Contact Line Behaviors on Superhydrophobic Substrates. <i>ACS Applied Materials & Interfaces</i> , 2015 , 7, 22644-51	9.5	30
522	In situ electric-driven reversible switching of water-droplet adhesion on a superhydrophobic surface. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23699-23706	13	46
521	Engineered Asymmetric Heterogeneous Membrane: A Concentration-Gradient-Driven Energy Harvesting Device. <i>Journal of the American Chemical Society</i> , 2015 , 137, 14765-72	16.4	225
520	Mechanical response and failure of 3D MWK carbon/epoxy composites at cryogenic temperature. <i>Fibers and Polymers</i> , 2015 , 16, 1349-1361	2	7
519	Integrated Ternary Bioinspired Nanocomposites via Synergistic Toughening of Reduced Graphene Oxide and Double-Walled Carbon Nanotubes. <i>ACS Nano</i> , 2015 , 9, 11568-73	16.7	98
518	Bioinspired Smart Gate-Location-Controllable Single Nanochannels: Experiment and Theoretical Simulation. <i>ACS Nano</i> , 2015 , 9, 12264-73	16.7	69
517	Design of honeycomb structure surfaces with controllable oil adhesion underwater. <i>RSC Advances</i> , 2015 , 5, 62078-62083	3.7	12
516	Multifunctional Engineering Aluminum Surfaces for Self-Propelled Anti-Condensation. <i>Advanced Engineering Materials</i> , 2015 , 17, 961-968	3.5	19
515	Asymmetric Dewetting: Printing Patterned Fine 3D Structures by Manipulating the Three Phase Contact Line (Adv. Funct. Mater. 15/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 2344-2344	15.6	
514	Bioinspired Hierarchical Surface Structures with Tunable Wettability for Regulating Bacteria Adhesion. <i>ACS Nano</i> , 2015 , 9, 10664-72	16.7	158
513	Experimental study on the bending properties and failure mechanism of 3D MWK composites at elevated temperatures. <i>Fibers and Polymers</i> , 2015 , 16, 2034-2045	2	5
512	Super-stable centimetre-scale inverse opal belts integrated with CdTe QDs for narrow band fluorescence optical waveguiding. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10964-10967	7.1	
511	Self-Replenishable Anti-Waxing Organogel Materials. <i>Angewandte Chemie</i> , 2015 , 127, 9103-9107	3.6	18
510	An ultrathin bilayer membrane with asymmetric wettability for pressure responsive oil/water emulsion separation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23477-23482	13	128
509	Organogel as durable anti-icing coatings. Science China Materials, 2015, 58, 559-565	7.1	91
508	Engineered Ionic Gates for Ion Conduction Based on Sodium and Potassium Activated Nanochannels. <i>Journal of the American Chemical Society</i> , 2015 , 137, 11976-83	16.4	146

507	A bio-inspired Co3O4-polypyrrole-graphene complex as an efficient oxygen reduction catalyst in one-step ball milling. <i>Nano Research</i> , 2015 , 8, 3461-3471	10	38
506	Use of Synergistic Interactions to Fabricate Strong, Tough, and Conductive Artificial Nacre Based on Graphene Oxide and Chitosan. <i>ACS Nano</i> , 2015 , 9, 9830-6	16.7	197
505	Nacre-inspired integrated nanocomposites with fire retardant properties by graphene oxide and montmorillonite. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 21194-21200	13	116
504	Superwetting Surfaces under Different Media: Effects of Surface Topography on Wettability. <i>Small</i> , 2015 , 11, 1939-46	11	112
503	Tailored Porphyrin Assembly at the OilAqueous Interface Based on the Receding of Three-Phase Contact Line of Droplet Template. <i>Advanced Materials Interfaces</i> , 2015 , 2, 1400365	4.6	17
502	A low-toxic artificial fluorescent glycoprotein can serve as an efficient cytoplasmic labeling in living cell. <i>Carbohydrate Polymers</i> , 2015 , 117, 211-214	10.3	1
501	Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 1446-51	16.4	59
500	A Bio-inspired Potassium and pH Responsive Double-gated Nanochannel. <i>Advanced Functional Materials</i> , 2015 , 25, 421-426	15.6	66
499	Fabricating surfaces with tunable wettability and adhesion by ionic liquids in a wide range. <i>Small</i> , 2015 , 11, 1782-6	11	25
498	Learning from nature: binary cooperative complementary nanomaterials. <i>Small</i> , 2015 , 11, 1072-96	11	79
497	High-Performance Solution-Processed Small-Molecule Solar Cells Based on a Dithienogermole-Containing Molecular Donor. <i>Advanced Energy Materials</i> , 2015 , 5, 1400987	21.8	44
496	Self-assembly of alumina nanowires into controllable micro-patterns by laser-assisted solvent spreading: towards superwetting surfaces. <i>CrystEngComm</i> , 2015 , 17, 540-545	3.3	8
495	A bio-inspired, sensitive, and selective ionic gate driven by silver (I) ions. <i>Small</i> , 2015 , 11, 543-7	11	48
494	Bio-inspired smart single asymmetric hourglass nanochannels for continuous shape and ion transport control. <i>Small</i> , 2015 , 11, 786-91	11	54
493	Self-Replenishable Anti-Waxing Organogel Materials. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 8975-9	16.4	59
492	Thermoresponsive Materials: Underwater Thermoresponsive Surface with Switchable Oil-Wettability between Superoleophobicity and Superoleophilicity (Small 27/2015). <i>Small</i> , 2015 , 11, 3337-3337	11	1
491	Polymer porous interfaces with controllable oil adhesion underwater. <i>RSC Advances</i> , 2015 , 5, 102378-1	033 / 83	11
490	Photonic Crystals: Hydrophilic⊞ydrophobic Patterned Molecularly Imprinted Photonic Crystal Sensors for High-Sensitive Colorimetric Detection of Tetracycline (Small 23/2015). <i>Small</i> , 2015 , 11, 282	28- 2 828	

(2015-2015)

489	Do Shale Pore Throats Have a Threshold Diameter for Oil Storage?. Scientific Reports, 2015, 5, 13619	4.9	23
488	Bioinspired photonic structures by the reflector layer of firefly lantern for highly efficient chemiluminescence. <i>Scientific Reports</i> , 2015 , 5, 12965	4.9	9
487	Adhesion Tuning at Superhydrophobic States: From Petal Effect to Lotus Effect. <i>Macromolecular Materials and Engineering</i> , 2015 , 300, 1057-1062	3.9	13
486	Salt-Tolerant Superoleophobicity on Alginate Gel Surfaces Inspired by Seaweed (Saccharina japonica). <i>Advanced Materials</i> , 2015 , 27, 4162-8	24	128
485	Antibody-Modified Reduced Graphene Oxide Films with Extreme Sensitivity to Circulating Tumor Cells. <i>Advanced Materials</i> , 2015 , 27, 6848-54	24	114
484	Ionic-Liquid-Gel Surfaces Showing Easy-Sliding and Ultradurable Features. <i>Advanced Materials Interfaces</i> , 2015 , 2, 1500177	4.6	29
483	Superaerophobic electrodes for direct hydrazine fuel cells. <i>Advanced Materials</i> , 2015 , 27, 2361-6	24	181
482	Direct Insight into the Three-Dimensional Internal Morphology of SolidLiquidNapor Interfaces at Microscale. <i>Angewandte Chemie</i> , 2015 , 127, 4874-4877	3.6	2
481	A General Strategy for the Separation of Immiscible Organic Liquids by Manipulating the Surface Tensions of Nanofibrous Membranes. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 14732-7	16.4	112
480	Superhydrophobic PumptlContinuous and Spontaneous Antigravity Water Delivery. <i>Advanced Functional Materials</i> , 2015 , 25, 4114-4119	15.6	93
479	Hydrophobic/Hydrophilic Cooperative Janus System for Enhancement of Fog Collection. <i>Small</i> , 2015 , 11, 4379-84	11	177
478	Manipulating Oil Droplets by Superamphiphobic Nozzle. <i>Small</i> , 2015 , 11, 4837-43		
	That in paradeting on bropriets by superampring membrasic Nozetier simula, 2013, 11, 1031-13	11	37
477	Superhydrophobic "Aspirator": Toward Dispersion and Manipulation of Micro/Nanoliter Droplets. Small, 2015 , 11, 4491-6	11	30
477 476	Superhydrophobic "Aspirator": Toward Dispersion and Manipulation of Micro/Nanoliter Droplets.		
	Superhydrophobic "Aspirator": Toward Dispersion and Manipulation of Micro/Nanoliter Droplets. Small, 2015, 11, 4491-6 Spear and Shield: Survival War between Mantis Shrimps and Abalones. Advanced Materials	11	30
476	Superhydrophobic "Aspirator": Toward Dispersion and Manipulation of Micro/Nanoliter Droplets. <i>Small</i> , 2015 , 11, 4491-6 Spear and Shield: Survival War between Mantis Shrimps and Abalones. <i>Advanced Materials Interfaces</i> , 2015 , 2, 1500250 A Bioinspired Switchable and Tunable Carbonate-Activated Nanofluidic Diode Based on a Single	4.6	30
476 475	Superhydrophobic "Aspirator": Toward Dispersion and Manipulation of Micro/Nanoliter Droplets. <i>Small</i> , 2015 , 11, 4491-6 Spear and Shield: Survival War between Mantis Shrimps and Abalones. <i>Advanced Materials Interfaces</i> , 2015 , 2, 1500250 A Bioinspired Switchable and Tunable Carbonate-Activated Nanofluidic Diode Based on a Single Nanochannel. <i>Angewandte Chemie</i> , 2015 , 127, 13868-13872 Edge-Hydroxylated Boron Nitride Nanosheets as an Effective Additive to Improve the Thermal	4.6 3.6	30 13 10

471	Magnetically Induced Fog Harvesting via Flexible Conical Arrays. <i>Advanced Functional Materials</i> , 2015 , 25, 5967-5971	15.6	106
470	Biologisch inspirierte Superbenetzbarkeit Ivon der Grundlagenforschung zur praktischen Anwendung. <i>Angewandte Chemie</i> , 2015 , 127, 3448-3462	3.6	25
469	A Bioinspired Switchable and Tunable Carbonate-Activated Nanofluidic Diode Based on a Single Nanochannel. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 13664-8	16.4	75
468	Large-Scale Assembly of Organic Highly Crystalline Multicomponent Wires through Surface-Engineered Condensation and Crystallization. <i>Small</i> , 2015 , 11, 5759-65	11	10
467	Fabrication of Nanochannels. <i>Materials</i> , 2015 , 8, 6277-6308	3.5	18
466	Floatable, Self-Cleaning, and Carbon-Black-Based Superhydrophobic Gauze for the Solar Evaporation Enhancement at the Air-Water Interface. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2015 , 7, 13645-52	9.5	262
465	Fe3O4 nanopearl decorated carbon nanotubes stemming from carbon onions with self-cleaning and microwave absorption properties. <i>RSC Advances</i> , 2015 , 5, 54175-54181	3.7	15
464	Design of bioinspired, smart, multiscale interfacial materials with superwettability. <i>MRS Bulletin</i> , 2015 , 40, 155-165	3.2	13
463	Oil Droplets: Manipulating Oil Droplets by Superamphiphobic Nozzle (Small 37/2015). <i>Small</i> , 2015 , 11, 4988-4988	11	
462	Hydrogels: Edge-Hydroxylated Boron Nitride Nanosheets as an Effective Additive to Improve the Thermal Response of Hydrogels (Adv. Mater. 44/2015). <i>Advanced Materials</i> , 2015 , 27, 7247-7247	24	7
461	Ordered porous structure hybrid films generated by breath figures for directional water penetration. <i>RSC Advances</i> , 2015 , 5, 88471-88476	3.7	35
460	Fish-scale bio-inspired multifunctional ZnO nanostructures. NPG Asia Materials, 2015, 7, e232-e232	10.3	47
459	A Self-Cleaning TiO2 Nanosisal-like Coating toward Disposing Nanobiochips of Cancer Detection. <i>ACS Nano</i> , 2015 , 9, 9284-91	16.7	69
458	Synthetic Asymmetric-Shaped Nanodevices with Symmetric pH-Gating Characteristics. <i>Advanced Functional Materials</i> , 2015 , 25, 1102-1110	15.6	74
457	Underwater self-cleaning scaly fabric membrane for oily water separation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 4336-43	9.5	104
456	Under-Water Superaerophobic Pine-Shaped Pt Nanoarray Electrode for Ultrahigh-Performance Hydrogen Evolution. <i>Advanced Functional Materials</i> , 2015 , 25, 1737-1744	15.6	283
455	Chiral recognition of Arg based on label-free PET nanochannel. <i>Chemical Communications</i> , 2015 , 51, 48	23 5 .6	52
454	Printing Patterned Fine 3D Structures by Manipulating the Three Phase Contact Line. <i>Advanced Functional Materials</i> , 2015 , 25, 2237-2242	15.6	125

(2014-2015)

453	Topographical binding to mucosa-exposed cancer cells: pollen-mimetic porous microspheres with tunable pore sizes. <i>ACS Applied Materials & Distriction</i> 1, 1985 (1997), 1985 (9.5	10	
45	Underwater Thermoresponsive Surface with Switchable Oil-Wettability between Superoleophobicity and Superoleophilicity. <i>Small</i> , 2015 , 11, 3338-42	11	44	
45	Superwettability controlled overflow. <i>Advanced Materials</i> , 2015 , 27, 1745-50	24	40	
459	Nanofibrous adhesion: the twin of gecko adhesion. <i>ACS Nano</i> , 2015 , 9, 3721-7	16.7	49	
44:	Interface manipulation for printing three-dimensional microstructures under magnetic guiding. Small, 2015 , 11, 1900-4	11	27	
44	Fabrication of hydrogel-coated single conical nanochannels exhibiting controllable ion rectification characteristics. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 6367-73	3.6	14	
44	Chinese brushes: From controllable liquid manipulation to template-free printing microlines. <i>Nano Research</i> , 2015 , 8, 97-105	10	21	
44	Hydrophilic-Hydrophobic Patterned Molecularly Imprinted Photonic Crystal Sensors for High-Sensitive Colorimetric Detection of Tetracycline. <i>Small</i> , 2015 , 11, 2738-42	11	149	
44.	Improving the Performances of Random Copolymer Based Organic Solar Cells by Adjusting the Film Features of Active Layers Using Mixed Solvents. <i>Polymers</i> , 2015 , 8,	4.5	8	
44	Hierarchical macro-meso-microporous ZSM-5 zeolite hollow fibers with highly efficient catalytic cracking capability. <i>Scientific Reports</i> , 2014 , 4, 7276	4.9	54	
44.	Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials. <i>Scientific Reports</i> , 2014 , 4, 5545	4.9	133	
44	Constructing free standing metal organic framework MIL-53 membrane based on anodized aluminum oxide precursor. <i>Scientific Reports</i> , 2014 , 4, 4947	4.9	42	
44	Inkjet Printing Patterned Photonic Crystal Domes for Wide Viewing-Angle Displays by Controlling the Sliding Three Phase Contact Line. <i>Advanced Optical Materials</i> , 2014 , 2, 34-38	8.1	185	
44	A general strategy for assembling nanoparticles in one dimension. <i>Advanced Materials</i> , 2014 , 26, 2501-	7 24	81	
439	Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 856-60	16.4	588	
438	Phototunable Underwater Oil Adhesion of Micro/Nanoscale Hierarchical-Structured ZnO Mesh Films with Switchable Contact Mode. <i>Advanced Functional Materials</i> , 2014 , 24, 536-542	15.6	64	
437	Ultrahigh hydrogen evolution performance of under-water "superaerophobic" MoSI nanostructured electrodes. <i>Advanced Materials</i> , 2014 , 26, 2683-7, 2615	24	604	
430	Design and fabrication of a biomimetic nanochannel for highly sensitive arginine response in serum samples. <i>Chemistry - A European Journal</i> , 2014 , 20, 7987-93	4.8	28	

435	Bell-shaped superhydrophilic-superhydrophobic-superhydrophilic double transformation on a pH-responsive smart surface. <i>Advanced Materials</i> , 2014 , 26, 306-10	24	111
434	Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. <i>Nature Communications</i> , 2014 , 5, 3813	17.4	630
433	Bio-inspired strategies for anti-icing. ACS Nano, 2014, 8, 3152-69	16.7	615
432	A light-responsive release platform by controlling the wetting behavior of hydrophobic surface. <i>ACS Nano</i> , 2014 , 8, 744-51	16.7	84
431	Cactus Stem Inspired Cone-Arrayed Surfaces for Efficient Fog Collection. <i>Advanced Functional Materials</i> , 2014 , 24, 6933-6938	15.6	108
430	Liquid Transfer: Chinese Brushes: Controllable Liquid Transfer in Ratchet Conical Hairs (Adv. Mater. 28/2014). <i>Advanced Materials</i> , 2014 , 26, 4888-4888	24	
429	Superhydrophobicity-mediated electrochemical reaction along the solid-liquid-gas triphase interface: edge-growth of gold architectures. <i>Advanced Materials</i> , 2014 , 26, 1124-8	24	40
428	Theoretical simulation of the ion current rectification (ICR) in nano-pores based on the Poisson-Nernst-Planck (PNP) model. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 23-32	3.6	35
427	Ice-phobic gummed tape with nano-cones on microspheres. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3312	13	46
426	Excellent bead-on-string silkworm silk with drop capturing abilities. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 1230-1234	13	18
425	Directional size-triggered microdroplet target transport on gradient-step fibers. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 7156-7160	13	27
424	Patterned liquid permeation through the TiO2 nanotube array coated Ti mesh by photoelectric cooperation for liquid printing. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 2498	13	8
423	Asymmetric ratchet effect for directional transport of fog drops on static and dynamic butterfly wings. <i>ACS Nano</i> , 2014 , 8, 1321-9	16.7	125
422	An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation. <i>Advanced Materials</i> , 2014 , 26, 2943-8	24	509
421	Photoelectric cooperative patterning of liquid permeation on the micro/nano hierarchically structured mesh film with low adhesion. <i>Nanoscale</i> , 2014 , 6, 12822-7	7.7	23
420	Superhydrophobic Materials: Fly-Eye Inspired Superhydrophobic Anti-Fogging Inorganic Nanostructures (Small 15/2014). <i>Small</i> , 2014 , 10, 3000-3000	11	2
419	TiO2BiO2 composite fibers with tunable interconnected porous hierarchy fabricated by single-spinneret electrospinning toward enhanced photocatalytic activity. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 12442	13	37
418	A synergy effect between the hydrophilic PEG and rapid solvent evaporation induced formation of tunable porous microspheres from a triblock copolymer. <i>RSC Advances</i> , 2014 , 4, 629-633	3.7	9

417	Flexible macroporous carbon nanofiber film with high oil adsorption capacity. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3557	13	91
416	A visual film sensor based on silole-infiltrated SiO2 inverse opal photonic crystal for detecting organic vapors. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 8865-8872	7.1	45
415	A novel self-healing poly(amic acid) ammonium salt hydrogel with temperature-responsivity and robust mechanical properties. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 7666-7668	13	29
414	Inkjet printing controllable footprint lines by regulating the dynamic wettability of coalescing ink droplets. <i>ACS Applied Materials & Discounty of State o</i>	9.5	63
413	Efficient luminescence of long persistent phosphor combined with photonic crystal. <i>ACS Applied Materials & ACS Applied </i>	9.5	29
412	In situ wetting state transition on micro- and nanostructured surfaces at high temperature. <i>ACS Applied Materials & District Section</i> , 15198-208	9.5	23
411	Ultratrace detection of glucose with enzyme-functionalized single nanochannels. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 19131-19135	13	37
410	Interfacial material system exhibiting superwettability. <i>Advanced Materials</i> , 2014 , 26, 6872-97	24	394
409	High-performance ionic diode membrane for salinity gradient power generation. <i>Journal of the American Chemical Society</i> , 2014 , 136, 12265-72	16.4	322
408	A biomimetic multi-stimuli-response ionic gate using a hydroxypyrene derivation-functionalized asymmetric single nanochannel. <i>Advanced Materials</i> , 2014 , 26, 6560-5	24	63
407	Bio-inspired titanium dioxide materials with special wettability and their applications. <i>Chemical Reviews</i> , 2014 , 114, 10044-94	68.1	415
406	Special wettable materials for oil/water separation. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 2445-2460)13	88o
405	Bio-inspired multistructured conical copper wires for highly efficient liquid manipulation. <i>ACS Nano</i> , 2014 , 8, 8757-64	16.7	29
404	pH-sensitive wettability induced by topological and chemical transition on the self assembled surface of block copolymer. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2014 , 32, 92-97	3.5	15
403	Controllable synthesis of ultrasmall CuInSe2 quantum dots for photovoltaic application. <i>RSC Advances</i> , 2014 , 4, 33855-33860	3.7	18
402	Bioinspired layered materials with superior mechanical performance. <i>Accounts of Chemical Research</i> , 2014 , 47, 1256-66	24.3	236
401	Salt-Induced Fabrication of Superhydrophilic and Underwater Superoleophobic PAA-g-PVDF Membranes for Effective Separation of Oil-in-Water Emulsions. <i>Angewandte Chemie</i> , 2014 , 126, 875-879	3.6	45
400	Bioinspired one-dimensional materials for directional liquid transport. <i>Accounts of Chemical Research</i> , 2014 , 47, 2342-52	24.3	167

399	Regulating Water Adhesion on Superhydrophobic TiO2 Nanotube Arrays. <i>Advanced Functional Materials</i> , 2014 , 24, 6381-6388	15.6	59
398	Facile and Large-Scale Fabrication of a Cactus-Inspired Continuous Fog Collector. <i>Advanced Functional Materials</i> , 2014 , 24, 3235-3240	15.6	185
397	Morphology-controlled self-assembled nanostructures of a porphyrin derivative and their photoelectrochemical properties. <i>RSC Advances</i> , 2014 , 4, 4063-4068	3.7	5
396	Quadratic isothermal amplification for the detection of microRNA. <i>Nature Protocols</i> , 2014 , 9, 597-607	18.8	47
395	Recent progress in developing advanced membranes for emulsified oil/water separation. <i>NPG Asia Materials</i> , 2014 , 6, e101-e101	10.3	479
394	BIOINSPIRED DESIGN OF SUPER-ANTIWETTING INTERFACES. World Scientific Series in Nanoscience and Nanotechnology, 2014 , 355-390	0.1	
393	Fabrication of cysteine-responsive biomimetic single nanochannels by a thiol-yne reaction strategy and their application for sensing in urine samples. <i>Advanced Materials</i> , 2014 , 26, 455-60	24	61
392	Bioinspired Green Composite Lotus Fibers. <i>Angewandte Chemie</i> , 2014 , 126, 3426-3429	3.6	1
391	Interfaces: Interfacial Material System Exhibiting Superwettability (Adv. Mater. 40/2014). <i>Advanced Materials</i> , 2014 , 26, 6871-6871	24	5
390	Oleophobicity: Filefish-Inspired Surface Design for Anisotropic Underwater Oleophobicity (Adv. Funct. Mater. 6/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 808-808	15.6	5
389	Nanoparticles: A General Strategy for Assembling Nanoparticles in One Dimension (Adv. Mater. 16/2014). <i>Advanced Materials</i> , 2014 , 26, 2500-2500	24	
388	Mechanical exfoliation of track-etched two-dimensional layered materials for the fabrication of ultrathin nanopores. <i>Chemical Communications</i> , 2014 , 50, 14149-52	5.8	21
387	Stretching Velocity-Dependent Dynamic Adhesion of the Water/Oil Interfaces for High Quality Lithographic Printing. <i>Advanced Materials Interfaces</i> , 2014 , 1, 1400080	4.6	3
386	Two-dimensional ion channel based soft-matter piezoelectricity. <i>Science China Materials</i> , 2014 , 57, 2-6	7.1	29
385	Surface-Independent Reversible Transition of Oil Adhesion under Water Induced by Lewis Acid B ase Interactions. <i>Advanced Materials Interfaces</i> , 2014 , 1, 1400298	4.6	10
384	A bio-inspired flexible fiber array with an open radial geometry for highly efficient liquid transfer. NPG Asia Materials, 2014 , 6, e125-e125	10.3	32
383	Variable Responsive Wettability Films via Electrospinning Induced by Solvents. <i>Journal of Nanomaterials</i> , 2014 , 2014, 1-7	3.2	1
382	Synthesis and Characterization of Structure-Controlled Micro-/Nanocomposite TiO2Fibers with Enhanced Photocatalytic Activity. <i>Journal of Nanomaterials</i> , 2014 , 2014, 1-10	3.2	2

381	Fabrication of CO2 Facilitated Transport Channels in Block Copolymer through Supramolecular Assembly. <i>Polymers</i> , 2014 , 6, 1403-1413	4.5	13
380	Grooved organogel surfaces towards anisotropic sliding of water droplets. <i>Advanced Materials</i> , 2014 , 26, 3131-5	24	102
379	Regular Metal Sulfide Microstructure Arrays Contributed by Ambient-Connected Gas Matrix Trapped on Superhydrophobic Surface. <i>Advanced Functional Materials</i> , 2014 , 24, 7007-7013	15.6	16
378	Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns. <i>Advanced Materials</i> , 2014 , 26, 5025-30	24	355
377	Fog Collection: Facile and Large-Scale Fabrication of a Cactus-Inspired Continuous Fog Collector (Adv. Funct. Mater. 21/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 3234-3234	15.6	5
376	Lithographic Printing: Stretching Velocity-Dependent Dynamic Adhesion of the Water/Oil Interfaces for High Quality Lithographic Printing (Adv. Mater. Interfaces 6/2014). <i>Advanced Materials Interfaces</i> , 2014 , 1,	4.6	1
375	Superhydrophobic Materials: Peanut Leaf Inspired Multifunctional Surfaces (Small 2/2014). <i>Small</i> , 2014 , 10, 214-214	11	4
374	Underwater Self-Cleaning PEDOT-PSS Hydrogel Mesh for Effective Separation of Corrosive and Hot Oil/Water Mixtures. <i>Advanced Materials Interfaces</i> , 2014 , 1, 1400099	4.6	68
373	Temperature-driven switching of water adhesion on organogel surface. <i>Advanced Materials</i> , 2014 , 26, 1895-900	24	129
372	Cancer Cells: Underwater-Transparent Nanodendritic Coatings for Directly Monitoring Cancer Cells (Adv. Healthcare Mater. 3/2014). <i>Advanced Healthcare Materials</i> , 2014 , 3, 460-460	10.1	1
371	Surface Chemistry: Bio-Inspired Multifunctional Metallic Foams Through the Fusion of Different Biological Solutions (Adv. Funct. Mater. 18/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 2720-2720	15.6	
370	Directional drop transport achieved on high-temperature anisotropic wetting surfaces. <i>Advanced Materials</i> , 2014 , 26, 6086-91	24	47
369	Organogels: Temperature-Driven Switching of Water Adhesion on Organogel Surface (Adv. Mater. 12/2014). <i>Advanced Materials</i> , 2014 , 26, 1894-1894	24	
368	Photonic Crystals: Inkjet Printing Patterned Photonic Crystal Domes for Wide Viewing-Angle Displays by Controlling the Sliding Three Phase Contact Line (Advanced Optical Materials 1/2014). <i>Advanced Optical Materials</i> , 2014 , 2, 102-102	8.1	1
367	Liquid Films: Precisely Patterning Graphene Sheets through a Liquid-Bridge Induced Strategy (Small 13/2014). <i>Small</i> , 2014 , 10, 2506-2506	11	
366	Chinese brushes: controllable liquid transfer in ratchet conical hairs. <i>Advanced Materials</i> , 2014 , 26, 4889	9-24	85
365	A fluoride-driven ionic gate based on a 4-aminophenylboronic acid-functionalized asymmetric single nanochannel. <i>ACS Nano</i> , 2014 , 8, 12292-9	16.7	76
364	Ordered Honeycomb Structure Surface Generated by Breath Figures for Liquid Reprography. Advanced Functional Materials, 2014, 24, 7241-7248	15.6	42

363	Porous Films: Ordered Honeycomb Structure Surface Generated by Breath Figures for Liquid Reprography (Adv. Funct. Mater. 46/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 7226-7226	15.6	1
362	Artificial ion channels regulating light-induced ionic currents in photoelectrical conversion systems. <i>Advanced Materials</i> , 2014 , 26, 2329-34	24	40
361	A comparative study on the tensile properties and failure mechanism of 3D MWK composites at room and liquid nitrogen temperature. <i>Polymer Composites</i> , 2014 , 35, 1294-1305	3	12
3 60	Bio-Inspired Multifunctional Metallic Foams Through the Fusion of Different Biological Solutions. <i>Advanced Functional Materials</i> , 2014 , 24, 2721-2726	15.6	42
359	Rapid Generation of Cell Gradients by Utilizing Solely Nanotopographic Interactions on a Bio-Inert Glass Surface. <i>Angewandte Chemie</i> , 2014 , 126, 2959-2962	3.6	13
358	Fabrication of Phase-Change Polymer Colloidal Photonic Crystals. <i>Journal of Nanomaterials</i> , 2014 , 2014, 1-7	3.2	4
357	Light-Gating Titania/Alumina Heterogeneous Nanochannels with Regulatable Ion Rectification Characteristic. <i>Advanced Functional Materials</i> , 2014 , 24, 424-431	15.6	49
356	Construction of biomimetic smart nanochannels for confined water. <i>National Science Review</i> , 2014 , 1, 144-156	10.8	50
355	Filefish-Inspired Surface Design for Anisotropic Underwater Oleophobicity. <i>Advanced Functional Materials</i> , 2014 , 24, 809-816	15.6	191
354	Tunable ionic transport control inside a bio-inspired constructive bi-channel nanofluidic device. <i>Small</i> , 2014 , 10, 793-801	11	34
353	Using micro to manipulate nano. Small, 2014, 10, 258-64	11	18
352	Water wettability in nanoconfined environment. <i>Science China: Physics, Mechanics and Astronomy</i> , 2014 , 57, 836-843	3.6	9
351	Bio-inspired photonic-crystal microchip for fluorescent ultratrace detection. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 5791-5	16.4	226
350	BIOINSPIRED SMART NANOCHANNELS. World Scientific Series in Nanoscience and Nanotechnology, 2014 , 743-783	0.1	1
349	Bio-inspired isotropic and anisotropic wettability on a Janus free-standing polypyrrole film fabricated by interfacial electro-polymerization. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 1740-1744	13	35
348	Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water. <i>Nature Communications</i> , 2013 , 4, 2276	17.4	332
347	Nanofluidic diode based on branched alumina nanochannels with tunable ionic rectification. <i>ACS Applied Materials & District Sciences</i> , 2013 , 5, 7931-6	9.5	44
346	Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. <i>Advanced Materials</i> , 2013 , 25, 6064-8	24	191

(2013-2013)

345	Robust superhydrophobicity of hierarchical ZnO hollow microspheres fabricated by two-step self-assembly. <i>Nano Research</i> , 2013 , 6, 726-735	10	55
344	Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection. <i>Advanced Materials</i> , 2013 , 25, 5937-42	24	219
343	Surface-mediated buckling of corelinell spheres for the formation of oriented anisotropic particles with tunable morphologies. <i>Soft Matter</i> , 2013 , 9, 2589	3.6	8
342	Applications of polymer single nanochannels in biosensors. <i>Science Bulletin</i> , 2013 , 58, 1473-1482		12
341	Flexible inorganic nanofibrous membranes with hierarchical porosity for efficient water purification. <i>Chemical Science</i> , 2013 , 4, 4378	9.4	90
340	From symmetric to asymmetric design of bio-inspired smart single nanochannels. <i>Chemical Communications</i> , 2013 , 49, 10048-63	5.8	71
339	Manipulating and dispensing micro/nanoliter droplets by superhydrophobic needle nozzles. <i>ACS Nano</i> , 2013 , 7, 10371-9	16.7	91
338	TiO2 nanotubular arrays loaded with Ni(OH)2: naked-eye visible photoswitchable color change induced by oxidative energy storage. <i>RSC Advances</i> , 2013 , 3, 22853	3.7	6
337	Droplet emission induced by ultrafast spreading on a superhydrophilic surface. Soft Matter, 2013, 9, 92	85 .6	8
336	Directed growth of calcein/nile red coaxial nanowire arrays via a two-step dip-coating approach. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 8581	13	9
335	Bark-mimetic layer-by-layer assembled montmorillonite/poly(p-aminostyrene) flexible nanocomposites shielding atomic oxygen erosion. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2013 , 31, 83-87	3.5	5
334	Photonic crystal boosted chemiluminescence reaction. <i>Laser and Photonics Reviews</i> , 2013 , 7, L39-L43	8.3	14
333	Acrylic acid grafted porous polycarbonate membrane with smart hydrostatic pressure response to pH. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4642	13	11
332	Patterned photonic crystals fabricated by inkjet printing. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 6048	37.1	80
331	An ion-induced low-oil-adhesion organic/inorganic hybrid film for stable superoleophobicity in seawater. <i>Advanced Materials</i> , 2013 , 25, 606-11	24	107
330	Microstructure and Wettability on the Elytral Surface of Aquatic Beetle. <i>Applied Mechanics and Materials</i> , 2013 , 461, 731-740	0.3	2
329	Photo-controlled water gathering on bio-inspired fibers. <i>Soft Matter</i> , 2013 , 9, 9294	3.6	27
328	High flux CO2 transporting nanochannel fabricated by the self-assembly of a linear-brush block copolymer. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 8097	13	13

327	Water-assisted fabrication of porous bead-on-string fibers. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 8363	13	20
326	A biomimetic mercury(II)-gated single nanochannel. <i>Chemical Communications</i> , 2013 , 49, 10679-81	5.8	7 ²
325	Architecture designed ZnO hollow microspheres with wide-range visible-light photoresponses. Journal of Materials Chemistry C, 2013 , 1, 6924	7.1	28
324	pH-responsive dual fluorescent coreEhell microspheres fabricated via a one-step emulsion polymerization. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 3802	7.1	19
323	Bio-inspired superoleophobic and smart materials: Design, fabrication, and application. <i>Progress in Materials Science</i> , 2013 , 58, 503-564	42.2	439
322	Bioinspired Multifunctional Foam with Self-Cleaning and Oil/Water Separation. <i>Advanced Functional Materials</i> , 2013 , 23, 2881-2886	15.6	440
321	Hierarchical TiO2 photonic crystal spheres prepared by spray drying for highly efficient photocatalysis. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 541-547	13	57
320	Ultratough artificial nacre based on conjugated cross-linked graphene oxide. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 3750-5	16.4	249
319	Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode. <i>Nanotechnology</i> , 2013 , 24, 415401	3.4	13
318	Temperature controlled water/oil wettability of a surface fabricated by a block copolymer: application as a dual water/oil on-off switch. <i>Advanced Materials</i> , 2013 , 25, 273-7	24	186
317	Wetting: intrinsically robust hydrophobicity. <i>Nature Materials</i> , 2013 , 12, 291-2	27	241
316	Zeolite-coated mesh film for efficient oilwater separation. Chemical Science, 2013, 4, 591-595	9.4	335
315	Lyophilic nonwettable surface based on an oil/water/air/solid four-phase system. Small, 2013, 9, 2515-9	11	21
314	Polymer in situ embedding for highly flexible, stretchable and water stable PEDOT:PSS composite conductors. <i>RSC Advances</i> , 2013 , 3, 7219	3.7	49
313	Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. <i>Journal of the American Chemical Society</i> , 2013 , 135, 7603-9	16.4	314
312	Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. <i>Advanced Materials</i> , 2013 , 25, 2071-6	24	869
311	Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films. <i>Advanced Materials</i> , 2013 , 25, 2422-7	24	453
310	Fabrication of layer-by-layer assembled biomimetic nanochannels for highly sensitive acetylcholine sensing. <i>Chemistry - A European Journal</i> , 2013 , 19, 7686-90	4.8	42

309	A multi-stopband photonic-crystal microchip for high-performance metal-ion recognition based on fluorescent detection. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 7296-9	16.4	126
308	Two-way nanopore sensing of sequence-specific oligonucleotides and small-molecule targets in complex matrices using integrated DNA supersandwich structures. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 2007-11	16.4	134
307	Innentitelbild: Two-Way Nanopore Sensing of Sequence-Specific Oligonucleotides and Small-Molecule Targets in Complex Matrices Using Integrated DNA Supersandwich Structures (Angew. Chem. 7/2013). <i>Angewandte Chemie</i> , 2013 , 125, 1892-1892	3.6	
306	Organogel-based thin films for self-cleaning on various surfaces. <i>Advanced Materials</i> , 2013 , 25, 4477-81	24	149
305	A Multi-stopband Photonic-Crystal Microchip for High-Performance Metal-Ion Recognition Based on Fluorescent Detection. <i>Angewandte Chemie</i> , 2013 , 125, 7437-7440	3.6	20
304	Ultratough Artificial Nacre Based on Conjugated Cross-linked Graphene Oxide. <i>Angewandte Chemie</i> , 2013 , 125, 3838-3843	3.6	67
303	Two-Way Nanopore Sensing of Sequence-Specific Oligonucleotides and Small-Molecule Targets in Complex Matrices Using Integrated DNA Supersandwich Structures. <i>Angewandte Chemie</i> , 2013 , 125, 2061-2065	3.6	8
302	Hydrophobic interaction-mediated capture and release of cancer cells on thermoresponsive nanostructured surfaces. <i>Advanced Materials</i> , 2013 , 25, 922-7	24	217
301	Bioinspired multiscale surfaces with special wettability. MRS Bulletin, 2013, 38, 375-382	3.2	56
300	Nacre-inspired design of mechanical stable coating with underwater superoleophobicity. <i>ACS Nano</i> , 2013 , 7, 5077-83	16.7	153
299	Asymmetric ion transport through ion-channel-mimetic solid-state nanopores. <i>Accounts of Chemical Research</i> , 2013 , 46, 2834-46	24.3	312
298	Patterning of controllable surface wettability for printing techniques. <i>Chemical Society Reviews</i> , 2013 , 42, 5184-209	58.5	253
297	Biomimetic ion nanochannels as a highly selective sequential sensor for zinc ions followed by phosphate anions. <i>Chemistry - A European Journal</i> , 2013 , 19, 9388-95	4.8	37
296	Electrospinning of multilevel structured functional micro-/nanofibers and their applications. Journal of Materials Chemistry A, 2013 , 1, 7290	13	262
295	Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation. <i>Advanced Materials</i> , 2013 , 25, 4192-8	24	689
294	Bioinspired artificial single ion pump. <i>Journal of the American Chemical Society</i> , 2013 , 135, 16102-10	16.4	205
293	Free-standing 1D assemblies of plasmonic nanoparticles. <i>Advanced Materials</i> , 2013 , 25, 3968-72	24	38
292	Photocatalysis-triggered ion rectification in artificial nanochannels based on chemically modified asymmetric TiO2 nanotubes. <i>Langmuir</i> , 2013 , 29, 4806-12	4	32

291	Constructing tunable nanopores and their application in drug delivery. ACS Nano, 2013, 7, 8344-9	16.7	68
290	Temperature-triggered directional motion of tiny water droplets on bioinspired fibers in humidity. <i>Chemical Communications</i> , 2013 , 49, 5253-5	5.8	48
289	Advances in Fabrication Materials of Honeycomb Structure Films by the Breath-Figure Method. <i>Materials</i> , 2013 , 6, 460-482	3.5	67
288	Patterned Honeycomb Structural Films with Fluorescent and Hydrophobic Properties. <i>Journal of Nanomaterials</i> , 2013 , 2013, 1-8	3.2	4
287	Temperature-controlled directional spreading of water on a surface with high hysteresis. <i>NPG Asia Materials</i> , 2013 , 5, e77-e77	10.3	22
286	Aligned silicon nanowires with fine-tunable tilting angles by metal-assisted chemical etching on off-cut wafers. <i>Physica Status Solidi - Rapid Research Letters</i> , 2013 , 7, 655-658	2.5	6
285	Conversion of Light to Electricity by Photoinduced Reversible pH Changes and Biomimetic Nanofluidic Channels. <i>Advanced Functional Materials</i> , 2013 , 23, 2887-2893	15.6	32
284	Bio-inspired soft polystyrene nanotube substrate for rapid and highly efficient breast cancer-cell capture. <i>NPG Asia Materials</i> , 2013 , 5, e63-e63	10.3	107
283	Innenr©ktitelbild: Ultratough Artificial Nacre Based on Conjugated Cross-linked Graphene Oxide (Angew. Chem. 13/2013). <i>Angewandte Chemie</i> , 2013 , 125, 3863-3863	3.6	1
282	Optoelectrowettability conversion on superhydrophobic CdS QDs sensitized TiO2 nanotubes. <i>Journal of Colloid and Interface Science</i> , 2012 , 366, 1-7	9.3	14
281	Elaborate positioning of nanowire arrays contributed by highly adhesive superhydrophobic pillar-structured substrates. <i>Advanced Materials</i> , 2012 , 24, 559-64	24	80
280	High-temperature gating of solid-state nanopores with thermo-responsive macromolecular nanoactuators in ionic liquids. <i>Advanced Materials</i> , 2012 , 24, 962-7	24	88
279	Bioinspired layered composites based on flattened double-walled carbon nanotubes. <i>Advanced Materials</i> , 2012 , 24, 1838-43	24	128
278	Layer-by-layer removal of insulating few-layer mica flakes for asymmetric ultra-thin nanopore fabrication. <i>Nano Research</i> , 2012 , 5, 99-108	10	45
277	Electrospun porous structure fibrous film with high oil adsorption capacity. <i>ACS Applied Materials & Amp; Interfaces</i> , 2012 , 4, 3207-12	9.5	335
276	Inkjet printed colloidal photonic crystal microdot with fast response induced by hydrophobic transition of poly(N-isopropyl acrylamide). <i>Journal of Materials Chemistry</i> , 2012 , 22, 21405		79
275	Highly-efficient gating of solid-state nanochannels by DNA supersandwich structure containing ATP aptamers: a nanofluidic IMPLICATION logic device. <i>Journal of the American Chemical Society</i> , 2012 , 134, 15395-401	16.4	178
274	In Situ Fully Light-Driven Switching of Superhydrophobic Adhesion. <i>Advanced Functional Materials</i> , 2012 , 22, 760-763	15.6	73

273	An underwater pH-responsive superoleophobic surface with reversibly switchable oil-adhesion. <i>Soft Matter</i> , 2012 , 8, 6740	3.6	79
272	Heterogeneous 3-D nanotubular arrays of CdS-TiO2: efficient collections of reflection light for enhanced photoelectric output. <i>Journal of Materials Chemistry</i> , 2012 , 22, 22120		11
271	pH gated glucose responsive biomimetic single nanochannels. <i>Chemical Communications</i> , 2012 , 48, 3282	2 :4 8	56
270	CO2-selective free-standing membrane by self-assembly of a UV-crosslinkable diblock copolymer. Journal of Materials Chemistry, 2012 , 22, 10918		25
269	Control of bacterial extracellular electron transfer by a solid-state mediator of polyaniline nanowire arrays. <i>Energy and Environmental Science</i> , 2012 , 5, 8517	35.4	57
268	A heatable and evaporation-free miniature reactor upon superhydrophobic pedestals. <i>Soft Matter</i> , 2012 , 8, 631-635	3.6	27
267	Hierarchically structured porous aluminum surfaces for high-efficient removal of condensed water. <i>Soft Matter</i> , 2012 , 8, 6680	3.6	134
266	Directional shedding-off of water on natural/bio-mimetic taper-ratchet array surfaces. <i>Soft Matter</i> , 2012 , 8, 1770-1775	3.6	50
265	Stronger water hanging ability and higher water collection efficiency of bioinspired fiber with multi-gradient and multi-scale spindle knots. <i>Soft Matter</i> , 2012 , 8, 11236	3.6	33
264	Bioinspired spindle-knotted fibers with a strong water-collecting ability from a humid environment. <i>Soft Matter</i> , 2012 , 8, 11450	3.6	36
263	Rose petals with a novel and steady air bubble pinning effect in aqueous media. <i>Soft Matter</i> , 2012 , 8, 2261	3.6	65
262	Concentration-gradient-dependent ion current rectification in charged conical nanopores. <i>Langmuir</i> , 2012 , 28, 2194-9	4	106
261	Electrospun shape memory film with reversible fibrous structure. <i>Journal of Materials Chemistry</i> , 2012 , 22, 22387		39
260	Multiscale bio-inspired honeycomb structure material with high mechanical strength and low density. <i>Journal of Materials Chemistry</i> , 2012 , 22, 10883		39
259	Photo-induced amplification of readout contrast in nanoscale data storage. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4299		25
258	Colloidal photonic crystals with narrow stopbands assembled from low-adhesive superhydrophobic substrates. <i>Journal of the American Chemical Society</i> , 2012 , 134, 17053-8	16.4	187
257	Terminating marine methane bubbles by superhydrophobic sponges. Advanced Materials, 2012, 24, 5884	4 <u>2</u> 9	95
256	Malachite green derivative-functionalized single nanochannel: light-and-pH dual-driven ionic gating. <i>Advanced Materials</i> , 2012 , 24, 6193-8	24	70

255	Condensation mode determines the freezing of condensed water on solid surfaces. <i>Soft Matter</i> , 2012 , 8, 8285	3.6	60
254	Hierarchical optical antenna: Gold nanoparticle-modified photonic crystal for highly-sensitive label-free DNA detection. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8127		45
253	Construction of biomimetic smart nanochannels with polymer membranes and application in energy conversion systems. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 4027-42	3.6	47
252	Light-controlled quick switch of adhesion on a micro-arrayed liquid crystal polymer superhydrophobic film. <i>Soft Matter</i> , 2012 , 8, 3730	3.6	59
251	Malachite Green Derivative Hunctionalized Single Nanochannel: Light-and-pH Dual-Driven Ionic Gating (Adv. Mater. 46/2012). <i>Advanced Materials</i> , 2012 , 24, 6192-6192	24	
250	Bio-inspired special wetting surfaces via self-assembly. <i>Science China Chemistry</i> , 2012 , 55, 2327-2333	7.9	31
249	Smartly aligning nanowires by a stretching strategy and their application as encoded sensors. <i>ACS Nano</i> , 2012 , 6, 9005-12	16.7	16
248	Unidirectional water-penetration composite fibrous film via electrospinning. <i>Soft Matter</i> , 2012 , 8, 5996	3.6	217
247	Photo-induced waterBil separation based on switchable superhydrophobicityBuperhydrophilicity and underwater superoleophobicity of the aligned ZnO nanorod array-coated mesh films. <i>Journal of Materials Chemistry</i> , 2012 , 22, 19652		304
246	A multi-structural and multi-functional integrated fog collection system in cactus. <i>Nature Communications</i> , 2012 , 3, 1247	17.4	822
245	Recent developments in polymeric superoleophobic surfaces. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2012 , 50, 1209-1224	2.6	199
244	A photo-induced, and chemical-driven, smart-gating nanochannel. <i>Small</i> , 2012 , 8, 838-42	11	43
243	Running droplet of interfacial chemical reaction flow. Soft Matter, 2012, 8, 5988	3.6	27
242	Light-regulated ion transport through artificial ion channels based on TiO2 nanotubular arrays. <i>Chemical Communications</i> , 2012 , 48, 5901-3	5.8	37
241	Bio-inspired adhesive superhydrophobic polyimide mat with high thermal stability. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8257		69
240	Fabrication of small organic luminogens honeycomb-structured films with aggregation-induced emission features. <i>Journal of Materials Chemistry</i> , 2012 , 22, 15869		28
239	Bio-Inspired Self-Cleaning Surfaces. Annual Review of Materials Research, 2012, 42, 231-263	12.8	366
238	Direct-writing colloidal photonic crystal microfluidic chips by inkjet printing for label-free protein detection. <i>Lab on A Chip</i> , 2012 , 12, 3089-95	7.2	86

237	Elaborately Aligning Bead-Shaped Nanowire Arrays Generated by a Superhydrophobic Micropillar Guiding Strategy. <i>Advanced Functional Materials</i> , 2012 , 22, 4569-4576	15.6	29
236	Light and pH cooperative nanofluidic diode using a spiropyran-functionalized single nanochannel. <i>Advanced Materials</i> , 2012 , 24, 2424-8	24	131
235	Small molecular nanowire arrays assisted by superhydrophobic pillar-structured surfaces with high adhesion. <i>Advanced Materials</i> , 2012 , 24, 2780-5	24	71
234	Clam's shell inspired high-energy inorganic coatings with underwater low adhesive superoleophobicity. <i>Advanced Materials</i> , 2012 , 24, 3401-5	24	239
233	Functional Fibers: Functional Fibers with Unique Wettability Inspired by Spider Silks (Adv. Mater. 20/2012). <i>Advanced Materials</i> , 2012 , 24, 2654-2654	24	
232	Bioinspirierte klistliche funktionelle Nanokanle: von der symmetrischen zur unsymmetrischen Modifikation. <i>Angewandte Chemie</i> , 2012 , 124, 5390-5401	3.6	21
231	A Strong Bio-Inspired Layered PNIPAM © lay Nanocomposite Hydrogel. <i>Angewandte Chemie</i> , 2012 , 124, 4754-4758	3.6	26
230	Innentitelbild: A Strong Bio-Inspired Layered PNIPAM t lay Nanocomposite Hydrogel (Angew. Chem. 19/2012). <i>Angewandte Chemie</i> , 2012 , 124, 4572-4572	3.6	
229	Surface Wetting in Liquid Liquid Bolid Triphase Systems: Solid-Phase-Independent Transition at the Liquid Liquid Interface by Lewis Acid Base Interactions. <i>Angewandte Chemie</i> , 2012 , 124, 8473-8476	3.6	
228	Innentitelbild: Surface Wetting in Liquid[liquidBolid Triphase Systems: Solid-Phase-Independent Transition at the Liquid[liquid Interface by Lewis AcidBase Interactions (Angew. Chem. 33/2012). <i>Angewandte Chemie</i> , 2012 , 124, 8246-8246	3.6	
227	Building bio-inspired artificial functional nanochannels: from symmetric to asymmetric modification. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 5296-307	16.4	199
226	A strong bio-inspired layered PNIPAM-clay nanocomposite hydrogel. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 4676-80	16.4	179
225	Inside Cover: A Strong Bio-Inspired Layered PNIPAMtay Nanocomposite Hydrogel (Angew. Chem. Int. Ed. 19/2012). <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 4494-4494	16.4	1
224	Bioinspired ion-transport properties of solid-state single nanochannels and their applications in sensing. <i>ChemPhysChem</i> , 2012 , 13, 2455-70	3.2	62
223	PANI nanowire film with underwater superoleophobicity and potential-modulated tunable adhesion for no loss oil droplet transport. <i>Soft Matter</i> , 2012 , 8, 9064	3.6	88
222	Biaxial stress controlled three-dimensional helical cracks. NPG Asia Materials, 2012, 4, e14-e14	10.3	7
221	Large-area crack-free single-crystal photonic crystals via combined effects of polymerization-assisted assembly and flexible substrate. <i>NPG Asia Materials</i> , 2012 , 4, e21-e21	10.3	66
220	Bioinspired colloidal photonic crystals with controllable wettability. <i>Accounts of Chemical Research</i> , 2011 , 44, 405-15	24.3	210

219	Reversible underwater switching between superoleophobicity and superoleophilicity on conducting polymer nanotube arrays. <i>Soft Matter</i> , 2011 , 7, 4163	3.6	54
218	Highly reflective superhydrophobic white coating inspired by poplar leaf hairs toward an effective Bool roof Intergy and Environmental Science, 2011, 4, 3364	35.4	42
217	Utilizing superhydrophilic materials to manipulate oil droplets arbitrarily in water. <i>Soft Matter</i> , 2011 , 7, 5144	3.6	53
216	Enhanced nanoparticle-oligonucleotide conjugates for DNA nanomachine controlled surface-enhanced Raman scattering switch. <i>Applied Physics Letters</i> , 2011 , 98, 133704	3.4	11
215	Biomimetic ionic rectifier systems: Asymmetric modification of single nanochannels by ion sputtering technology. <i>Journal of Electroanalytical Chemistry</i> , 2011 , 656, 231-236	4.1	46
214	Elaborate architecture of the hierarchical hen eggshell. Nano Research, 2011, 4, 171-179	10	26
213	A miniature droplet reactor built on nanoparticle-derived superhydrophobic pedestals. <i>Nano Research</i> , 2011 , 4, 266-273	10	64
212	Biomimetic photoelectric conversion systems based on artificial membranes. <i>Science China Chemistry</i> , 2011 , 54, 603-610	7.9	9
211	Bio-inspired smart gating nanochannels based on polymer films. Science China Chemistry, 2011 , 54, 1537	7 -7 1546	11
210	Water transport and purification in nanochannels controlled by asymmetric wettability. <i>Small</i> , 2011 , 7, 2225-31	11	61
209	Large-scale fabrication of bioinspired fibers for directional water collection. <i>Small</i> , 2011 , 7, 3429-33	11	102
208	Bioinspired Fibers: Large-Scale Fabrication of Bioinspired Fibers for Directional Water Collection (Small 24/2011). <i>Small</i> , 2011 , 7, 3428-3428	11	2
207	Multilevel and Multiscale Nanostructures of Polyaniline Doped With L-Lysine. <i>Macromolecular Chemistry and Physics</i> , 2011 , 212, 1410-1418	2.6	3
206	Macromol. Rapid Commun. 6/2011. <i>Macromolecular Rapid Communications</i> , 2011 , 32, n/a-n/a	4.8	1
205	Bio-inspired Heterostructured Bead-on-String Fibers That Respond to Environmental Wetting. <i>Advanced Functional Materials</i> , 2011 , 21, 1398-1402	15.6	95
204	Three-Level Biomimetic Rice-Leaf Surfaces with Controllable Anisotropic Sliding. <i>Advanced Functional Materials</i> , 2011 , 21, 2927-2932	15.6	208
203	Illinging-MicrodropletIPatterning Upon High-Adhesion, Pillar-Structured Silicon Substrates. <i>Advanced Functional Materials</i> , 2011 , 21, 3297-3307	15.6	59
202	Superoleophobic Surfaces with Controllable Oil Adhesion and Their Application in Oil Transportation. <i>Advanced Functional Materials</i> , 2011 , 21, 4270-4276	15.6	157

201	Photoelectric Cooperative Induced Wetting on Aligned-Nanopore Arrays for Liquid Reprography. <i>Advanced Functional Materials</i> , 2011 , 21, 4519-4526	15.6	31
200	Controllable Underwater Oil-Adhesion-Interface Films Assembled from Nonspherical Particles. <i>Advanced Functional Materials</i> , 2011 , 21, 4436-4441	15.6	90
199	Drug Delivery: Bio-inspired Heterostructured Bead-on-String Fibers That Respond to Environmental Wetting (Adv. Funct. Mater. 8/2011). <i>Advanced Functional Materials</i> , 2011 , 21, 1330-1330	15.6	1
198	Curvature-driven reversible in situ switching between pinned and roll-down superhydrophobic States for water droplet transportation. <i>Advanced Materials</i> , 2011 , 23, 545-9	24	236
197	Applications of bio-inspired special wettable surfaces. <i>Advanced Materials</i> , 2011 , 23, 719-34	24	867
196	A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. <i>Advanced Materials</i> , 2011 , 23, 4270-3	24	1283
195	Controlling water capture of bioinspired fibers with hump structures. Advanced Materials, 2011, 23, 548	36 <u>-</u> 291	81
194	Superstructures and SERS Properties of Gold Nanocrystals with Different Shapes. <i>Angewandte Chemie</i> , 2011 , 123, 1631-1634	3.6	51
193	High-Temperature Wetting Transition on Micro- and Nanostructured Surfaces. <i>Angewandte Chemie</i> , 2011 , 123, 5423-5426	3.6	7
192	Rāktitelbild: High-Temperature Wetting Transition on Micro- and Nanostructured Surfaces (Angew. Chem. 23/2011). <i>Angewandte Chemie</i> , 2011 , 123, n/a-n/a	3.6	1
191	High-temperature wetting transition on micro- and nanostructured surfaces. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 5311-4	16.4	43
190	Back Cover: High-Temperature Wetting Transition on Micro- and Nanostructured Surfaces (Angew. Chem. Int. Ed. 23/2011). <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 5228-5228	16.4	
189	Flexible Au nanoparticle arrays induced metal-enhanced fluorescence towards pressure sensors. Journal of Materials Chemistry, 2011 , 21, 5234		24
188	3-D vertical arrays of TiO2 nanotubes on Ti meshes: Efficient photoanodes for water photoelectrolysis. <i>Journal of Materials Chemistry</i> , 2011 , 21, 10354		42
187	Bio-inspired anisotropic micro/nano-surface from a natural stamp: grasshopper wings. <i>Soft Matter</i> , 2011 , 7, 7973	3.6	21
186	A pH-driven DNA nanoswitch for responsive controlled release. <i>Chemical Communications</i> , 2011 , 47, 28	5 9. &	98
185	Fabrication of functional colloidal photonic crystals based on well-designed latex particles. <i>Journal of Materials Chemistry</i> , 2011 , 21, 14113		62
184	Towards understanding the nanofluidic reverse electrodialysis system: well matched charge selectivity and ionic composition. <i>Energy and Environmental Science</i> , 2011 , 4, 2259	35.4	135

183	Amphoteric polymeric photonic crystal with U-shaped pH response developed by intercalation polymerization. <i>Soft Matter</i> , 2011 , 7, 4156	3.6	13
182	Biomimetic smart nanopores and nanochannels. <i>Chemical Society Reviews</i> , 2011 , 40, 2385-401	58.5	554
181	Tuning surface wettability through supramolecular interactions. <i>Soft Matter</i> , 2011 , 7, 1638	3.6	30
180	Programmable DNA switch for bioresponsive controlled release. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13811		39
179	Multi-level micro-/nanostructures of butterfly wings adapt at low temperature to water repellency. <i>Soft Matter</i> , 2011 , 7, 10569	3.6	41
178	The effect of surface microstructures and surface compositions on the wettabilities of flower petals. <i>Soft Matter</i> , 2011 , 7, 2977	3.6	57
177	Amplifying fluorescence sensing based on inverse opal photonic crystal toward trace TNT detection. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1730-1735		87
176	Functional biointerface materials inspired from nature. <i>Chemical Society Reviews</i> , 2011 , 40, 2909-21	58.5	228
175	Janus interface materials: superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf. <i>Soft Matter</i> , 2011 , 7, 5948	3.6	168
174	Micro/nanoscale hierarchical structured ZnO mesh film for separation of water and oil. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 14606-10	3.6	170
173	Enantioselective recognition in biomimetic single artificial nanochannels. <i>Journal of the American Chemical Society</i> , 2011 , 133, 7644-7	16.4	215
172	Controllable Synthesis of Latex Particles with Multicavity Structures. <i>Macromolecules</i> , 2011 , 44, 2404-24	4 9 3;	42
171	Photocontrollable water permeation on the micro/nanoscale hierarchical structured ZnO mesh films. <i>Langmuir</i> , 2011 , 27, 4265-70	4	50
170	Capillary adhesion of wetted cribellate spider capture silks for larger pearly hanging-drops. <i>Soft Matter</i> , 2011 , 7, 9468	3.6	27
169	Facile creation of bio-inspired superhydrophobic Ce-based metallic glass surfaces. <i>Applied Physics Letters</i> , 2011 , 99, 261905	3.4	42
168	Reversibly phototunable TiO2 photonic crystal modulated by Ag nanoparticles oxidation/reduction. <i>Applied Physics Letters</i> , 2011 , 98, 023110	3.4	13
167	Directional water collection on wetted spider silk. <i>Nature</i> , 2010 , 463, 640-3	50.4	1324
166	Photoelectric conversion behavior based on direct interfacial charge-transfer from porphyrin derivative to silicon nanowires. <i>Applied Physics Letters</i> , 2010 , 97, 253111	3.4	11

(2010-2010)

165	Closed-air induced composite wetting on hydrophilic ordered nanoporous anodic alumina. <i>Applied Physics Letters</i> , 2010 , 97, 233107	3.4	36
164	Facile Fabrication of Tough SiC Inverse Opal Photonic Crystals. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 22303-22308	3.8	36
163	Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. <i>Accounts of Chemical Research</i> , 2010 , 43, 368-77	24.3	517
162	A biomimetic asymmetric responsive single nanochannel. <i>Journal of the American Chemical Society</i> , 2010 , 132, 11736-42	16.4	206
161	Enhancement of photochemical hydrogen evolution over Pt-loaded hierarchical titania photonic crystal. <i>Energy and Environmental Science</i> , 2010 , 3, 1503	35.4	130
160	Recent developments in bio-inspired special wettability. <i>Chemical Society Reviews</i> , 2010 , 39, 3240-55	58.5	823
159	Thermal-responsive hydrogel surface: tunable wettability and adhesion to oil at the water/solid interface. <i>Soft Matter</i> , 2010 , 6, 2708	3.6	136
158	Multichannel TiO2 hollow fibers with enhanced photocatalytic activity. <i>Journal of Materials Chemistry</i> , 2010 , 20, 5095		135
157	A biomimetic zinc activated ion channel. <i>Chemical Communications</i> , 2010 , 46, 1682-4	5.8	128
156	Capillary force restoration of droplet on superhydrophobic ribbed nano-needles arrays. <i>Soft Matter</i> , 2010 , 6, 2470	3.6	8
155	Enhanced sensitivity in a Hg2+ sensor by photonic crystals. <i>Analytical Methods</i> , 2010 , 2, 448	3.2	14
154	Precise control of wettability from LCST tunable surface. <i>Journal of Materials Chemistry</i> , 2010 , 20, 2176		15
153	Electromagnetic synergetic actuators based on polypyrrole/Fe3O4 hybrid nanotube arrays. <i>Nano Research</i> , 2010 , 3, 670-675	10	26
152	Recent research progress in wettability of colloidal crystals. <i>Science China Chemistry</i> , 2010 , 53, 318-326	7.9	8
151	Bioinspired synthesis and preparation of multilevel micro/nanostructured materials. <i>Frontiers of Chemistry in China: Selected Publications From Chinese Universities</i> , 2010 , 5, 247-261		3
150	Current rectification in temperature-responsive single nanopores. <i>ChemPhysChem</i> , 2010 , 11, 859-64	3.2	158
149	Bioinspired Ribbed Nanoneedles with Robust Superhydrophobicity. <i>Advanced Functional Materials</i> , 2010 , 20, 656-662	15.6	165
148	Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source. <i>Advanced Functional Materials</i> , 2010 , 20, 1339-1344	15.6	337

147	Fabrication and Characterization of Superhydrophobic Surfaces with Dynamic Stability. <i>Advanced Functional Materials</i> , 2010 , 20, 3343-3349	15.6	61
146	Bio-inspired Photoelectric Conversion Based on Smart-Gating Nanochannels. <i>Advanced Functional Materials</i> , 2010 , 20, 2636-2642	15.6	102
145	Integrating Ionic Gate and Rectifier Within One Solid-State Nanopore via Modification with Dual-Responsive Copolymer Brushes. <i>Advanced Functional Materials</i> , 2010 , 20, 3561-3567	15.6	98
144	Switchable Adhesion on Liquid/Solid Interfaces. <i>Advanced Functional Materials</i> , 2010 , 20, 3753-3764	15.6	192
143	"Water strider" legs with a self-assembled coating of single-crystalline nanowires of an organic semiconductor. <i>Advanced Materials</i> , 2010 , 22, 376-9	24	57
142	Bioinspired smart gating of nanochannels toward photoelectric-conversion systems. <i>Advanced Materials</i> , 2010 , 22, 1021-4	24	97
141	A pH-gating ionic transport nanodevice: Asymmetric chemical modification of single nanochannels. <i>Advanced Materials</i> , 2010 , 22, 2440-3	24	182
140	Bio-inspired hierarchical macromolecule-nanoclay hydrogels for robust underwater superoleophobicity. <i>Advanced Materials</i> , 2010 , 22, 4826-30	24	234
139	Direction controlled driving of tiny water drops on bioinspired artificial spider silks. <i>Advanced Materials</i> , 2010 , 22, 5521-5	24	226
138	Poly(3,4-ethylenedioxythiophene) Nanospheres Synthesized Using a Micelle Soft Template Associated with Cuprous Oxide. <i>Macromolecular Chemistry and Physics</i> , 2010 , 211, 1215-1221	2.6	2
137	Fabrication of stable single nanochannels with controllable ionic rectification. Small, 2010, 6, 361-5	11	90
136	Ratchet-induced anisotropic behavior of superparamagnetic microdroplet. <i>Applied Physics Letters</i> , 2009 , 94, 144104	3.4	27
135	In vivo nanomechanical imaging of blood-vessel tissues directly in living mammals using atomic force microscopy. <i>Applied Physics Letters</i> , 2009 , 95, 013704	3.4	34
134	Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface. <i>Advanced Materials</i> , 2009 , 21, 665-669	24	938
133	Patterned Wettability Transition by Photoelectric Cooperative and Anisotropic Wetting for Liquid Reprography. <i>Advanced Materials</i> , 2009 , 21, 3744-3749	24	109
132	Designing Superhydrophobic Porous Nanostructures with Tunable Water Adhesion. <i>Advanced Materials</i> , 2009 , 21, 3799-3803	24	397
131	Reversible Switching of Water-Droplet Mobility on a Superhydrophobic Surface Based on a Phase Transition of a Side-Chain Liquid-Crystal Polymer. <i>Advanced Materials</i> , 2009 , 21, 4254-4258	24	116
130	Superoleophobic Surfaces: Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface (Adv. Mater. 6/2009). <i>Advanced Materials</i> , 2009 , 21, NA-NA	24	4

(2008-2009)

129	Electromagnetic Functional Urchin-Like Hollow Carbon Spheres Carbonized by Polyaniline Micro/Nanostructures Containing FeCl3 as a Precursor. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 2860-2864	2.3	19
128	3D Hollow Microspheres Assembled from 1D Polyaniline Nanowires through a Cooperation Reaction. <i>Macromolecular Chemistry and Physics</i> , 2009 , 210, 2046-2051	2.6	16
127	Color-oscillating photonic crystal hydrogel. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 1719-24	4.8	43
126	Thermochromic corellhell nanofibers fabricated by melt coaxial electrospinning. <i>Journal of Applied Polymer Science</i> , 2009 , 112, 269-274	2.9	67
125	Theoretical explorations on the armchair BN nanotube with defects. <i>Journal of Nanoparticle Research</i> , 2009 , 11, 395-403	2.3	10
124	Compound-fluidic electrospray: An efficient method for the fabrication of microcapsules with multicompartment structure. <i>Science Bulletin</i> , 2009 , 54, 3147-3153		9
123	Enhanced photoelectrochemical performance of ZnO photoanode with scattering hollow cavities. <i>Applied Physics A: Materials Science and Processing</i> , 2009 , 96, 473-479	2.6	11
122	Ultra-fast spreading on superhydrophilic fibrous mesh with nanochannels. <i>Applied Surface Science</i> , 2009 , 255, 4944-4949	6.7	28
121	The dewetting properties of lotus leaves. <i>Langmuir</i> , 2009 , 25, 1371-6	4	95
120	Learning from nature: building bio-inspired smart nanochannels. ACS Nano, 2009, 3, 3339-42	16.7	196
119	Antiplatelet and thermally responsive poly(N-isopropylacrylamide) surface with nanoscale topography. <i>Journal of the American Chemical Society</i> , 2009 , 131, 10467-72	16.4	183
118	Application of the restricting flow of solid edges in fabricating superhydrophobic surfaces. <i>Langmuir</i> , 2009 , 25, 9903-7	4	12
117	A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. <i>Journal of the American Chemical Society</i> , 2009 , 131, 7800-5	16.4	285
116	Air bubble bursting effect of lotus leaf. <i>Langmuir</i> , 2009 , 25, 14129-34	4	130
115	Fabrication of large-area patterned photonic crystals by ink-jet printing. <i>Journal of Materials Chemistry</i> , 2009 ,		44
114	Smart responsive surfaces switching reversibly between super-hydrophobicity and super-hydrophilicity. <i>Soft Matter</i> , 2009 , 5, 275-281	3.6	157
113	Saccharide-sensitive wettability switching on a smart polymer surface. <i>Soft Matter</i> , 2009 , 5, 2759	3.6	47
112	A general approach for fabrication of superhydrophobic and superamphiphobic surfaces. <i>Applied Physics Letters</i> , 2008 , 92, 053102	3.4	135

111	In situ investigation on dynamic suspending of microdroplet on lotus leaf and gradient of wettable micro- and nanostructure from water condensation. <i>Applied Physics Letters</i> , 2008 , 92, 084106	3.4	83
110	Fabrication of three-dimensional ZnO/TiO2 heteroarchitectures via a solution process. <i>Journal of Materials Chemistry</i> , 2008 , 18, 3909		139
109	Gating of single synthetic nanopores by proton-driven DNA molecular motors. <i>Journal of the American Chemical Society</i> , 2008 , 130, 8345-50	16.4	265
108	Petal effect: a superhydrophobic state with high adhesive force. <i>Langmuir</i> , 2008 , 24, 4114-9	4	1416
107	Photonic crystal concentrator for efficient output of dye-sensitized solar cells. <i>Journal of Materials Chemistry</i> , 2008 , 18, 2650		32
106	How does the leaf margin make the lotus surface dry as the lotus leaf floats on water?. <i>Soft Matter</i> , 2008 , 4, 2232	3.6	60
105	Fabrication of closed-cell polyimide inverse opal photonic crystals with excellent mechanical properties and thermal stability. <i>Journal of Materials Chemistry</i> , 2008 , 18, 2262		37
104	Polypyrrole nanofiber arrays synthesized by a biphasic electrochemical strategy. <i>Journal of Materials Chemistry</i> , 2008 , 18, 2276		83
103	Electrically Tunable Polypyrrole Inverse Opals with Switchable Stopband, Conductivity, and Wettability. <i>Chemistry of Materials</i> , 2008 , 20, 3554-3556	9.6	92
102	Colorful humidity sensitive photonic crystal hydrogel. <i>Journal of Materials Chemistry</i> , 2008 , 18, 1116		287
101	Bioinspired construction of MgIli alloys surfaces with stable superhydrophobicity and improved corrosion resistance. <i>Applied Physics Letters</i> , 2008 , 92, 183103	3.4	138
100	Extreme Water repellency on strong water-spreading surface without tilted degree actuation. <i>Applied Physics Letters</i> , 2008 , 93, 094107	3.4	12
99	Wettability Alteration of Polymer Surfaces Produced by Scraping. <i>Journal of Adhesion Science and Technology</i> , 2008 , 22, 395-402	2	55
98	Nanostructural effects on optical properties of tungsten inverse opal. <i>Applied Physics A: Materials Science and Processing</i> , 2008 , 93, 489-493	2.6	5
97	A facile method of shielding from UV damage by polymer photonic crystals. <i>Polymer International</i> , 2008 , 57, 509-514	3.3	9
96	Photophysical and self-assembly behavior of poly(amidoamine) dendrons with chromophore as scaffold: The effect of dendritic architecture. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 4584-4593	2.5	5
95	Superhydrophobic 3D Microstructures Assembled From 1D Nanofibers of Polyaniline. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 239-243	4.8	90
94	Low-Cost, Thermoresponsive Wettability of Surfaces: Poly(N-isopropylacrylamide)/Polystyrene Composite Films Prepared by Electrospinning. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 485-48	94.8	77

(2007-2008)

Conducting Polypyrrole Conical Nanocontainers: Formation Mechanism and Voltage Switchable Property. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 1335-1340	4.8	24
Rose-Like Microstructures of Polyaniline by Using a Simplified Template-Free Method under a High Relative Humidity. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 1705-1710	4.8	31
Ultrasensitive DNA detection using photonic crystals. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 7258-62	16.4	142
Tunable Adhesive Superhydrophobic Surfaces for Superparamagnetic Microdroplets. <i>Advanced Functional Materials</i> , 2008 , 18, 3219-3225	15.6	147
Hierarchical Assembly of Multilayered Hollow Microspheres from an Amphiphilic Pharmaceutical Molecule of Azithromycin. <i>Advanced Materials</i> , 2008 , 20, 3682-3686	24	48
Bio-Inspired, Smart, Multiscale Interfacial Materials. <i>Advanced Materials</i> , 2008 , 20, 2842-2858	24	847
A non-planar organic molecule with non-volatile electrical bistability for nano-scale data storage. <i>Journal of Materials Chemistry</i> , 2007 , 17, 3530		26
Directional adhesion of superhydrophobic butterfly wings. <i>Soft Matter</i> , 2007 , 3, 178-182	3.6	870
Enhanced photoelectrical performance of TiO2 electrodes integrated with microtube-network structures. <i>Journal of Materials Chemistry</i> , 2007 , 17, 5084		42
Solid-state fluorescence enhancement of organic dyes by photonic crystals. <i>Journal of Materials Chemistry</i> , 2007 , 17, 90-94		73
QUASI-SOLID-STATE DYE-SENSITIZED SOLAR CELLS BASED ON ZnO PHOTOANODE. <i>Chemical Engineering Communications</i> , 2007 , 195, 375-385	2.2	3
Superior water repellency of water strider legs with hierarchical structures: experiments and analysis. <i>Langmuir</i> , 2007 , 23, 4892-6	4	285
Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet. <i>Journal of the American Chemical Society</i> , 2007 , 129, 1478-9	16.4	393
Micropatterning of polydiacetylene based on a photoinduced chromatic transition and mechanism study. <i>Journal of Applied Polymer Science</i> , 2007 , 103, 942-946	2.9	17
Enthalpy-driven three-state switching of a superhydrophilic/superhydrophobic surface. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 3915-7	16.4	164
Photo- and Proton-Dual-Responsive Fluorescence Switch Based on a Bisthienylethene-Bridged Naphthalimide Dimer and Its Application in Security Data Storage. <i>European Journal of Organic Chemistry</i> , 2007 , 2007, 2064-2067	3.2	36
Chemical Dual-Responsive Wettability of Superhydrophobic PANI-PAN Coaxial Nanofibers. <i>Macromolecular Rapid Communications</i> , 2007 , 28, 1135-1141	4.8	79
A New Route for the Preparation of Brain-Like Nanostructured Polyaniline. <i>Macromolecular Rapid Communications</i> , 2007 , 28, 1339-1344	4.8	38
	Property. Macromolecular Rapid Communications, 2008, 29, 1335-1340 Rose-Like Microstructures of Polyaniline by Using a Simplified Template-Free Method under a High Relative Humidity. Macromolecular Rapid Communications, 2008, 29, 1705-1710 Ultrasensitive DNA detection using photonic crystals. Angewandte Chemie - International Edition, 2008, 47, 7258-62 Tunable Adhesive Superhydrophobic Surfaces for Superparamagnetic Microdroplets. Advanced Functional Materials, 2008, 18, 3219-3225 Hierarchical Assembly of Multilayered Hollow Microspheres from an Amphiphilic Pharmaceutical Molecule of Azithromycin. Advanced Materials, 2008, 20, 3682-3686 Bio-Inspired, Smart, Multiscale Interfacial Materials. Advanced Materials, 2008, 20, 2842-2858 A non-planar organic molecule with non-volatile electrical bistability for nano-scale data storage. Journal of Materials Chemistry, 2007, 17, 3530 Directional adhesion of superhydrophobic butterfly wings. Soft Matter, 2007, 3, 178-182 Enhanced photoelectrical performance of TiO2 electrodes integrated with microtube-network structures. Journal of Materials Chemistry, 2007, 17, 5084 Solid-state fluorescence enhancement of organic dyes by photonic crystals. Journal of Materials Chemistry, 2007, 17, 90-94 QUASI-SOLID-STATE DYE-SENSITIZED SOLAR CELLS BASED ON ZnO PHOTOANODE. Chemical Engineering Communications, 2007, 195, 375-385 Superior water repellency of water strider legs with hierarchical structures: experiments and analysis. Langmuir, 2007, 23, 4892-6 Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet. Journal of the American Chemical Society, 2007, 129, 1478-9 Micropatterning of polydiacetylene based on a photoinduced chromatic transition and mechanism study. Journal of Applied Polymer Science, 2007, 103, 942-946 Enthalpy-driven three-state switching of a superhydrophibic/Superhydrophobic surface. Angewande Chemie - International Edition, 2007, 46, 3915-7 Photo- and Proton-Dual-Responsive Fluorescenc	Property. Macromolecular Rapid Communications, 2008, 29, 1335-1340 4.8 Rose-Like Microstructures of Polyaniline by Using a Simplified Template-Free Method under a High Relative Humidity. Macromolecular Rapid Communications, 2008, 29, 1705-1710 4.8 Ultrasensitive DNA detection using photonic crystals. Angewandte Chemie - International Edition, 2008, 47, 7258-62 15.6 Ultrasensitive DNA detection using photonic crystals. Angewandte Chemie - International Edition, 2008, 47, 7258-62 15.6 Hierarchical Assembly of Multilayered Hollow Microspheres from an Amphiphilic Pharmaceutical Molecule of Azithromycin. Advanced Materials, 2008, 20, 3682-3686 Bio-Inspired, Smart, Multiscale Interfacial Materials. Advanced Materials, 2008, 20, 2842-2858 4 A non-planar organic molecule with non-volatile electrical bistability for nano-scale data storage. Journal of Materials Chemistry, 2007, 17, 3530 Directional adhesion of superhydrophobic butterfly wings. Soft Matter, 2007, 3, 178-182 3.6 Enhanced photoelectrical performance of TiO2 electrodes integrated with microtube-network structures. Journal of Materials Chemistry, 2007, 17, 5084 Solid-state fluorescence enhancement of organic dyes by photonic crystals. Journal of Materials Chemistry, 2007, 17, 909-4 QUASI-SOLID-STATE DYE-SENSITIZED SOLAR CELLS BASED ON ZnO PHOTOANODE. Chemical Engineering Communications, 2007, 195, 375-385 Superior water repellency of water strider legs with hierarchical structures: experiments and analysis. Langmuir, 2007, 23, 4892-6 Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet. Journal of the American Chemical Society, 2007, 129, 1478-9 16.4 Micropaterning of polydiacetylene based on a photoinduced chromatic transition and mechanism study. Journal of Applied Polymer Science, 2007, 103, 942-946 Enthalpy-driven three-state switching of a superhydrophibic/superhydrophobic surface. Angewandte Chemie - International Edition, 2007, 46, 3915-7 Photo- and Proton-Dual-Res

75	Reversible Wettability Switching of Polyaniline-Coated Fabric, Triggered by Ammonia Gas. <i>Macromolecular Rapid Communications</i> , 2007 , 28, 2230-2236	4.8	50
74	Photoresponsive surfaces with controllable wettability. <i>Journal of Photochemistry and Photobiology C: Photochemistry Reviews</i> , 2007 , 8, 18-29	16.4	233
73	Controllable water permeation on a poly(N-isopropylacrylamide)-modified nanostructured copper mesh film. <i>Langmuir</i> , 2007 , 23, 327-31	4	81
72	Controlling wettability and photochromism in a dual-responsive tungsten oxide film. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 1264-7	16.4	196
71	Simple Fabrication of Full Color Colloidal Crystal Films with Tough Mechanical Strength. <i>Macromolecular Chemistry and Physics</i> , 2006 , 207, 596-604	2.6	204
70	Control over the Wettability of Colloidal Crystal Films by Assembly Temperature. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 188-192	4.8	79
69	High-yield self-assembly of flower-like ZnO nanostructures. <i>Journal of Nanoscience and Nanotechnology</i> , 2006 , 6, 1830-2	1.3	7
68	Wetting and anti-wetting on aligned carbon nanotube films. Soft Matter, 2006, 2, 811-821	3.6	176
67	Hydrogen-Bonding-Driven Wettability Change of Colloidal Crystal Films: From Superhydrophobicity to Superhydrophilicity. <i>Chemistry of Materials</i> , 2006 , 18, 4984-4986	9.6	62
66	Highly Fluorescent Contrast for Rewritable Optical Storage Based on Photochromic Bisthienylethene-Bridged Naphthalimide Dimer. <i>Chemistry of Materials</i> , 2006 , 18, 235-237	9.6	168
65	The interaction of a novel ruthenium (II) complex with self-assembled DNA film on silicon surface. <i>Surface and Interface Analysis</i> , 2006 , 38, 1372-1376	1.5	3
64	Surface arrangement of azobenzene moieties in two different azobenzene-derived Langmiur B lodgett films. <i>Surface and Interface Analysis</i> , 2006 , 38, 1343-1347	1.5	10
63	Bioinspired surfaces with special wettability. <i>Accounts of Chemical Research</i> , 2005 , 38, 644-52	24.3	1750
62	Super-Hydrophobic PDMS Surface with Ultra-Low Adhesive Force. <i>Macromolecular Rapid Communications</i> , 2005 , 26, 1805-1809	4.8	302
61	Conducting Nanopearl Chains Based on the Dmit Salt. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 13638	8-33642	2 17
60	Biophysics: water-repellent legs of water striders. <i>Nature</i> , 2004 , 432, 36	50.4	1973
59	Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. <i>Journal of the American Chemical Society</i> , 2004 , 126, 62-3	16.4	1043
58	Self-assembly of large-scale micropatterns on aligned carbon nanotube films. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 1146-9	16.4	158

(2001-2004)

57	Reversible switching between superhydrophilicity and superhydrophobicity. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 357-60	16.4	948
56	A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 2012-4	16.4	1232
55	A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 4338-41	16.4	776
54	Self-Assembly of Large-Scale Micropatterns on Aligned Carbon Nanotube Films. <i>Angewandte Chemie</i> , 2004 , 116, 1166-1169	3.6	11
53	Reversible Switching between Superhydrophilicity and Superhydrophobicity. <i>Angewandte Chemie</i> , 2004 , 116, 361-364	3.6	127
52	Water-Assisted Fabrication of Polyaniline Honeycomb Structure Film. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 4586-4589	3.4	45
51	Influence of Small Molecules in Conducting Polyaniline on the Photovoltaic Properties of Solid-State Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 18693-18697	3.4	98
50	Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity. <i>Langmuir</i> , 2004 , 20, 5659-61	4	421
49	Progress in materials and technologies for ultrahigh density data storage. <i>Progress in Natural Science: Materials International</i> , 2003 , 13, 247-253	3.6	0
48	Effect of the P/Al ratio of Al-P-O on the catalytic activity of o-methylation of catechol with methanol. <i>Reaction Kinetics and Catalysis Letters</i> , 2003 , 79, 365-371		20
47	Synthesis and characterization of polystyrene/poly(4-vinylpyridine) triblock copolymers by reversible additionfragmentation chain transfer polymerization and their self-assembled aggregates in water. <i>Journal of Applied Polymer Science</i> , 2003 , 89, 1017-1025	2.9	55
46	Electrochemical Deposition of Conductive Superhydrophobic Zinc Oxide Thin Films. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 9954-9957	3.4	263
45	cis-trans Driven organized reorientation of an azobenzene derivative monolayer at the liquid/graphite interface. <i>New Journal of Chemistry</i> , 2003 , 27, 1463-1465	3.6	7
44	Super-hydrophobic surface of aligned polyacrylonitrile nanofibers. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 1221-3	16.4	584
43	High photostability and quantum yield of nanoporous TiO2 thin film electrodes co-sensitized with capped sulfides. <i>Journal of Materials Chemistry</i> , 2002 , 12, 1459-1464		148
42	Preparation and properties of novel aerodynamic pressure-sensitive paint via the sol-gel method. <i>Journal of Materials Research</i> , 2002 , 17, 1312-1319	2.5	5
41	Super-Hydrophobicity of Large-Area Honeycomb-Like Aligned Carbon Nanotubes. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 9274-9276	3.4	267
40	Reversible light-induced wettability of fluorine-containing azobenzene-derived Langmuir B lodgett films. <i>Surface and Interface Analysis</i> , 2001 , 32, 121-124	1.5	15

39	Local conductivity study of TiO2 electrodes by atomic force microscopy. <i>Surface and Interface Analysis</i> , 2001 , 32, 125-129	1.5	6
38	Mass-transfer limitations for immobilized enzyme-catalyzed kinetic resolution of racemate in a fixed-bed reactor. <i>Biotechnology and Bioengineering</i> , 2001 , 74, 29-39	4.9	27
37	Super-"Amphiphobic" Aligned Carbon Nanotube Films The authors thank the Special Research Foundation of the National Nature Science Foundation of China (29992530, 69890228), the State Key Project Fundamental Research (G1999064504), and the Chinese Academy of Sciences for	16.4	412
36	continuing financial support <i>Angewandte Chemie - International Edition</i> , 2001 , 40, 1743-1746 Self-Assembly of Uniform Spherical Aggregates of Magnetic Nanoparticles through III Interactions. <i>Angewandte Chemie - International Edition</i> , 2001 , 40, 2135-2138	16.4	149
35	ADSORPTION AND DESORPTION OF PHENOL ON ACTIVATED CARBON FIBERS IN A FIXED BED. <i>Separation Science and Technology</i> , 2001 , 36, 2147-2163	2.5	12
34	C60 based nanoparticles: self-assembly of a novel fullerene derivative. <i>New Journal of Chemistry</i> , 2001 , 25, 670-672	3.6	13
33	Preparation and characterization of a novel dumbbell-type [60]fullerene dimer containing a cyanine dye. <i>New Journal of Chemistry</i> , 2001 , 25, 1610-1612	3.6	7
32	Self-assembled monolayers of new dendron-thiols: manipulation of the patterned surface and wetting properties. <i>Chemical Communications</i> , 2001 , 1906-7	5.8	21
31	A unique synthesis of a well-defined block copolymer having alternating segments constituted by maleic anhydride and styrene and the self-assembly aggregating behavior thereof. <i>Chemical Communications</i> , 2001 , 365-366	5.8	78
30	Reversible Wettability of Photoresponsive Fluorine-Containing Azobenzene Polymer in Langmuir B lodgett Films. <i>Langmuir</i> , 2001 , 17, 4593-4597	4	145
29	Mass-Transfer Limitations for Immobilized Enzyme-Catalyzed Kinetic Resolution of Racemate in a Batch Reactor. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 4054-4062	3.9	26
28	Photo-Induced Nanopatterns on the Surface of C60 Single Crystals. <i>Advanced Materials</i> , 1999 , 11, 649-6	5524	5
27	Oxygen-Insensitive Peroxide Reduction Catalysts for Reliable Electrochemical Bioassays. <i>Advanced Materials Interfaces</i> ,2102163	4.6	1
26	Single-Crystalline Organic One-Dimensional Microarrays toward High-Performing Phototransistors. <i>Advanced Materials Technologies</i> ,2101134	6.8	2
25	High-Resolution Erasable LivelPatterns Based on Controllable Ink Diffusion on the 3D Blue-Phase Liquid Crystal Networks. <i>Advanced Functional Materials</i> ,2110985	15.6	5
24	Multifunctional Organic Single-Crystalline Microwire Arrays toward Optical Applications. <i>Advanced Functional Materials</i> ,2113025	15.6	2
23	Investigation on the intrinsic wetting thresholds of liquids by measuring the interaction forces of self-assembled monolayers. <i>Nano Research</i> ,1	10	О
22	Nasal Cavity Inspired Micro-Nanostructured Cone Array Tube for Oil Recovery in Wastewater. <i>Advanced Materials Interfaces</i> ,2102311	4.6	2

21	Laser-Directed Foaming of Hydroplastic Polyelectrolyte Films toward Tunable Structures and Programmable Routes. <i>Advanced Functional Materials</i> ,2107598	15.6	3
20	Functional Colloidal Assemblies Based on Superwettable Substrates. <i>Particle and Particle Systems Characterization</i> ,2100196	3.1	2
19	Bioinspired hierarchical porous membrane for efficient uranium extraction from seawater. <i>Nature Sustainability</i> ,	22.1	11
18	Bidirectional Light-Driven Ion Transport through Porphyrin Metal-Organic Framework based van-der-Waals Heterostructures via pH-Induced Band Alignment Inversion. <i>CCS Chemistry</i> ,1-29	7.2	Ο
17	Interfacial Super-Assembly of Ordered Mesoporous Carbon-Silica/AAO Hybrid Membrane with Enhanced Permselectivity for Temperature- and pH-Regulated Smart Ion Transport. <i>Angewandte Chemie</i> ,	3.6	4
16	Nature Sunflower Stalk Pith with Zwitterionic Hydrogel Coating for Highly Efficient and Sustainable Solar Evaporation. <i>Advanced Functional Materials</i> ,2108135	15.6	14
15	Surface Microstructures and Nanostructures in Natural Systems401		
14	High-Performance Photocathodic Bioanalysis Based on CoreBhell Structured Cu 2 O@TiO 2 Nanowire Arrays with Air[liquidBolid Joint Interfaces. <i>CCS Chemistry</i> ,1018-1027	7.2	2
13	Integrin-Mimetic Mechanosensory Elastomer with Fluorescence Probe for Monitoring Chain Deformation in Situ. <i>CCS Chemistry</i> ,1176-1184	7.2	O
12	Amphiphilic Pd@micro-organohydrogels with controlled wettability for enhancing gas-liquid-solid triphasic catalytic performance. <i>Nano Research</i> ,1	10	4
11	Heterogeneous MXene/PS-b-P2VP Nanofluidic Membranes with Controllable Ion Transport for Osmotic Energy Conversion. <i>Advanced Functional Materials</i> ,2105013	15.6	10
10	Liquid-Phase Super Photoactuator through the Synergetic Effects of a Janus Structure and Solvent/Thermal/Photo Responses. <i>Advanced Functional Materials</i> ,2105728	15.6	5
9	Liquid diodelwith gatinglbased on shape memory sponge. Science China Materials,1	7.1	1
8	Quantum essence of particle superfluidity. Nano Research,1	10	O
7	Hierarchical Confined Assembly of Bilayer Heterostructures with Programmable Patterns770-778		1
6	An end-capped strategy for crystalline polymer donor to improve the photovoltaic performance of non-fullerene solar cells. <i>Science China Chemistry</i> ,1	7.9	1
5	Controllable Directional Liquid Transport in Open Channel. Advanced Materials Interfaces, 2102547	4.6	2
4	Underwater Directional and Continuous Manipulation of Gas Bubbles on Superaerophobic Magnetically-Responsive Microcilia Array. <i>Advanced Functional Materials</i> ,2113374	15.6	4

3	High-efficiency, self-grinding exfoliation of small graphene nanosheets from microcrystalline graphite driven by microbead milling as conductive additives. <i>Science China Materials</i> ,1	7.1	O	
2	Integrated sensing from the synergetic color change of the center/brush of cholesteric liquid crystal particles. <i>Science China Materials</i> ,1	7.1	O	
1	Liquid Film Sculpture via Droplet Impacting on Microstructured Heterowettable Surfaces. <i>Advanced Functional Materials</i> .2203222	15.6	3	