Muthumuni Managa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9373614/publications.pdf

Version: 2024-02-01

		567281	677142
38	571	15	22
papers	citations	h-index	g-index
38	38	38	625
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	New type of metal-free and Zinc(II), $\ln(III)$, $Ga(III)$ phthalocyanines carrying biologically active substituents: Synthesis and photophysicochemical properties and photodynamic therapy activity. Inorganica Chimica Acta, 2019, 491, 1-8.	2.4	51
2	Acetophenone substituted phthalocyanines and their graphene quantum dots conjugates as photosensitizers for photodynamic antimicrobial chemotherapy against Staphylococcus aureus. Photodiagnosis and Photodynamic Therapy, 2020, 29, 101607.	2.6	33
3	Conjugates of platinum nanoparticles with gallium tetra – (4-Carboxyphenyl) porphyrin and their use in photodynamic antimicrobial chemotherapy when in solution or embedded in electrospun fiber. Polyhedron, 2014, 76, 94-101.	2.2	30
4	Photo-physicochemical properties and in vitro photodynamic therapy activity of morpholine-substituted Zinc(II)-Phthalocyanines π-π stacked on biotinylated graphene quantum dots. Dyes and Pigments, 2019, 165, 488-498.	3.7	30
5	Photophysical properties and photodynamic therapy activity of a <i>meso</i> -tetra(4-carboxyphenyl)porphyrin tetramethyl ester–graphene quantum dot conjugate. New Journal of Chemistry, 2019, 43, 4518-4524.	2.8	29
6	Physicochemical and antimicrobial photodynamic chemotherapy (against E. coli) by indium phthalocyanines in the presence of silver–iron bimetallic nanoparticles. Polyhedron, 2019, 162, 30-38.	2.2	28
7	Photophysical properties and photodynamic therapy activities of detonated nanodiamonds-BODIPY-phthalocyanines nanoassemblies. Photodiagnosis and Photodynamic Therapy, 2019, 26, 101-110.	2.6	28
8	Photophysical studies of graphene quantum dots - Pyrene-derivatized porphyrins conjugates when encapsulated within Pluronic F127 micelles. Dyes and Pigments, 2018, 148, 405-416.	3.7	27
9	Fluorescence behaviour of supramolecular hybrids containing graphene quantum dots and pyrene-derivatized phthalocyanines and porphyrins. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 333, 174-185.	3.9	25
10	Photodynamic antimicrobial chemotherapy activity of gallium tetra-(4-carboxyphenyl) porphyrin when conjugated to differently shaped platinum nanoparticles. Journal of Molecular Structure, 2015, 1099, 432-440.	3.6	21
11	Effects of Pluronic F127 micelles as delivering agents on the vitro dark toxicity and photodynamic therapy activity of carboxy and pyrene substituted porphyrins. Polyhedron, 2018, 152, 102-107.	2.2	21
12	The modulation of the photophysical and photodynamic therapy activities of a phthalocyanine by detonation nanodiamonds: Comparison with graphene quantum dots and carbon nanodots. Diamond and Related Materials, 2020, 101, 107617.	3.9	20
13	Enhancement of photodynamic antimicrobialtherapy through the use of cationic indium porphyrin conjugated to Ag/CuFe2O4 nanoparticles. Photodiagnosis and Photodynamic Therapy, 2020, 30, 101736.	2.6	20
14	Photodynamic antimicrobial chemotherapy activity of (5,10,15,20-tetrakis(4-(4-carboxyphenycarbonoimidoyl)phenyl)porphyrinato) chloro gallium(III). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 151, 867-874.	3.9	19
15	Incorporation of metal free and Ga 5,10,15,20-tetrakis(4-bromophenyl) porphyrin into Pluronic F127-folic acid micelles. Journal of Luminescence, 2018, 194, 739-746.	3.1	19
16	Sn(IV) porphyrin-biotin decorated nitrogen doped graphene quantum dots nanohybrids for photodynamic therapy. Polyhedron, 2022, 213, 115624.	2.2	16
17	Photophysicochemical behavior and antimicrobial activity of dihydroxosilicon tris(diaquaplatinum)octacarboxyphthalocyanine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 125, 147-153.	3.9	15
18	Effects of pluronic silica nanoparticles on the photophysical and photodynamic therapy behavior of triphenyl-p-phenoxy benzoic acid metalloporphyrins. Journal of Coordination Chemistry, 2016, 69, 3491-3506.	2.2	14

#	Article	IF	CITATIONS
19	The photophysical studies of Pluronic F127/P123 micelle mixture system loaded with metal free and Zn 5,10,15,20-tetrakis[4-(benzyloxy) phenyl]porphyrins. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 339, 49-58.	3.9	14
20	The photo-physicochemical properties and in vitro photodynamic therapy activity of differently substituted-zinc (II)-phthalocyanines and graphene quantum dots conjugates on MCF7 breast cancer cell line. Inorganica Chimica Acta, 2019, 488, 304-311.	2.4	12
21	Photophysical properties of GaCl 5,10,15,20-tetra(1-pyrenyl)porphyrinato incorporated into Pluronic F127 micelle. Journal of Luminescence, 2017, 185, 34-41.	3.1	11
22	Effect of symmetry and metal nanoparticles on the photophysicochemical and photodynamic therapy properties of cinnamic acid zinc phthalocyanine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 214, 49-57.	3.9	9
23	Photophysical properties of tetraphenylporphyrinsubphthalocyanine conjugates. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1-20.	0.8	8
24	Theoretical and photodynamic therapy characteristics of heteroatom doped detonation nanodiamonds linked to asymmetrical phthalocyanine for eradication of breast cancer cells. Journal of Luminescence, 2020, 227, 117465.	3.1	8
25	Symmetrically Substituted Zn and Al Phthalocyanines and Polymers for Photodynamic Therapy Application. Frontiers in Chemistry, 2021, 9, 647331.	3.6	8
26	Optical limiting properties of indium 5,10,15,20-tetrakis (4-aminophenyl) porphyrin covalently linked to semiconductor quantum dots. Inorganica Chimica Acta, 2020, 511, 119838.	2.4	7
27	Photodynamic antimicrobial chemotherapy of asymmetric porphyrin-silver conjugates towards photoinactivation of <i>Staphylococcus aureus</i> . Journal of Coordination Chemistry, 2020, 73, 593-608.	2.2	7
28	Photophysical studies of meso-tetrakis(4-nitrophenyl) and meso-tetrakis(4-sulfophenyl) gallium porphyrins loaded into Pluronic F127 polymeric micelles. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 348, 179-187.	3.9	6
29	Photodynamic therapy characteristics of phthalocyanines in the presence of boron doped detonation nanodiamonds: Effect of symmetry and charge. Photodiagnosis and Photodynamic Therapy, 2022, 37, 102705.	2.6	6
30	Photodynamic activity of novel cationic porphyrins conjugated to graphene quantum dots against <i>Staphylococcus aureus</i> . Journal of Porphyrins and Phthalocyanines, 2022, 26, 392-402.	0.8	6
31	The photophysicochemical properties and photodynamic therapy activity of phenyldiazenyl phenoxy substituted phthalocyanines when incorporated into Pluronic® F127 micelles. Polyhedron, 2019, 174, 114157.	2.2	5
32	Photophysics and NLO properties of Ga(III) and In(III) phthalocyaninates bearing diethyleneglycol chains. Journal of Porphyrins and Phthalocyanines, 2018, 22, 137-148.	0.8	4
33	Design of Phthalocyanineâ€Nanoparticle Hybrids for Photodynamic Therapy Applications in Oxygenâ€Deficient Tumour Environment. ChemistrySelect, 2019, 4, 9084-9095.	1.5	4
34	Photodynamic therapy activity of 5,10,15-tris(5-bromo-2-thienyl),20(phenylcarboxy)porphyrin conjugated to graphene quantum dot against MCF-7 breast cancer cells. Journal of Coordination Chemistry, 2022, 75, 1112-1128.	2.2	4
35	Synthesis of a near infrared-actuated phthalocyanine-lipid vesicle system for augmented photodynamic therapy. Synthetic Metals, 2021, 278, 116811.	3.9	3
36	Porphyrins Encapsulated into Pluronic F127 Micelles: Evaluating the Effect of the Central Metal and Substituents on the Photophysicochemical Properties in Water. Macroheterocycles, 2017, 10, 467-473.	0.5	2

#	#	Article	lF	CITATIONS
3	37	Asymmetrical zinc(II) phthalocyanines conjugated to metal tungstate nanoparticles for photoinactivation of <i>Staphylococcus aureus</i> . Journal of Coordination Chemistry, 0, , 1-15.	2.2	1
3	38	Synthesis and dark toxicity of 5-(4-carboxyphenyl)-10,15,20-tris(phenyl)-porphyrinato chlorido gallium(III) when conjugated to $\hat{\Gamma}$ -aminolevulinic acid. Journal of Coordination Chemistry, 2016, 69, 3035-3042.	2.2	0