Günter Reiter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9373536/publications.pdf

Version: 2024-02-01

290 papers 12,033 citations

56 h-index 100 g-index

299 all docs

299 docs citations

times ranked

299

7900 citing authors

#	Article	IF	CITATIONS
1	Dewetting of thin polymer films. Physical Review Letters, 1992, 68, 75-78.	2.9	1,033
2	Unstable thin polymer films: rupture and dewetting processes. Langmuir, 1993, 9, 1344-1351.	1.6	485
3	Instability of Thin Polymer Films on Coated Substrates: Rupture, Dewetting, and Drop Formation. Journal of Colloid and Interface Science, 1996, 178, 383-399.	5.0	382
4	Residual stresses in thin polymer films cause rupture and dominate early stages of dewetting. Nature Materials, 2005, 4, 754-758.	13.3	321
5	Observation of five-fold local symmetry in liquid lead. Nature, 2000, 408, 839-841.	13.7	287
6	Dewetting as a Probe of Polymer Mobility in Thin Films. Macromolecules, 1994, 27, 3046-3052.	2.2	269
7	Crystallization of Adsorbed Polymer Monolayers. Physical Review Letters, 1998, 80, 3771-3774.	2.9	239
8	Cloning polymer single crystals through self-seeding. Nature Materials, 2009, 8, 348-353.	13.3	238
9	Mobility of Polymers in Films Thinner than Their Unperturbed Size. Europhysics Letters, 1993, 23, 579-584.	0.7	207
10	Thin Film Instability Induced by Long-Range Forces. Langmuir, 1999, 15, 2551-2558.	1.6	187
11	Direct Visualization of Random Crystallization and Melting in Arrays of Nanometer-Size Polymer Crystals. Physical Review Letters, 2001, 87, 226101.	2.9	187
12	Some relevant parameters affecting the glass transition of supported ultra-thin polymer films. European Physical Journal E, 2002, 8, 217-224.	0.7	176
13	Instabilities of Thin Polymer Films on Layers of Chemically Identical Grafted Molecules. Macromolecules, 1996, 29, 2150-2157.	2.2	175
14	From Static to Kinetic Friction in Confined Liquid Films. Science, 1994, 263, 1741-1744.	6.0	172
15	Polymer crystallization in quasi-two dimensions. I. Experimental results. Journal of Chemical Physics, 2000, 112, 4376-4383.	1.2	167
16	Anisotropic Charge Transport in Spherulitic Poly(3â€hexylthiophene) Films. Advanced Materials, 2012, 24, 839-844.	11.1	167
17	Controllable Processes for Generating Large Single Crystals of Poly(3â€hexylthiophene). Angewandte Chemie - International Edition, 2012, 51, 11131-11135.	7.2	165
18	Dewetting of Highly Elastic Thin Polymer Films. Physical Review Letters, 2001, 87, .	2.9	150

#	Article	IF	Citations
19	Spin-cast, thin, glassy polymer films: Highly metastable forms of matter. European Physical Journal E, 2001, 6, 25-28.	0.7	142
20	Lamellar Crystal Orientations Biased by Crystallization Kinetics in Polymer Thin Films. Macromolecules, 2006, 39, 5159-5164.	2.2	139
21	Auto-Optimization of Dewetting Rates by Rim Instabilities in Slipping Polymer Films. Physical Review Letters, 2001, 87, 166103.	2.9	130
22	Synchrotron x-ray study of orientational order in single crystalC60at room temperature. Physical Review Letters, 1992, 69, 2943-2946.	2.9	126
23	Stick to slip transition and adhesion of lubricated surfaces in moving contact. Journal of Chemical Physics, 1994, 101, 2606-2615.	1.2	124
24	Systematic Control of Nucleation Density in Poly(3â€Hexylthiophene) Thin Films. Advanced Functional Materials, 2011, 21, 518-524.	7.8	123
25	Polymer crystallization in quasi-two dimensions. II. Kinetic models and computer simulations. Journal of Chemical Physics, 2000, 112, 4384-4393.	1.2	116
26	Some unique features of polymer crystallisation. Chemical Society Reviews, 2014, 43, 2055-2065.	18.7	115
27	Nanometer-Scale Surface Patterns with Long-Range Order Created by Crystallization of Diblock Copolymers. Physical Review Letters, 1999, 83, 3844-3847.	2.9	111
28	Kinetics of Autophobic Dewetting of Polymer Films. Langmuir, 2000, 16, 6351-6357.	1.6	110
29	Relaxation of Residual Stress and Reentanglement of Polymers in Spin-Coated Films. Physical Review Letters, 2007, 99, 036101.	2.9	105
30	Microstructured Surfaces Cause Severe but Nonâ€Detrimental Deformation of the Cell Nucleus. Advanced Materials, 2009, 21, 3586-3590.	11.1	105
31	Processing Pathways Decide Polymer Properties at the Molecular Level. Macromolecules, 2019, 52, 7146-7156.	2.2	105
32	Enhanced Instability in Thin Liquid Films by Improved Compatibility. Physical Review Letters, 2000, 85, 1432-1435.	2.9	103
33	Competition of crystal nucleation to fabricate the oriented semi-crystalline polymers. Polymer, 2013, 54, 3402-3407.	1.8	100
34	Directing nuclear deformation on micropillared surfaces by substrate geometry and cytoskeleton organization. Biomaterials, 2013, 34, 2991-3001.	5.7	98
35	Anomalous Behavior of Proton Zero Point Motion in Water Confined in Carbon Nanotubes. Physical Review Letters, 2006, 97, 247801.	2.9	87
36	Light absorption of poly(3-hexylthiophene) single crystals. RSC Advances, 2014, 4, 11121-11123.	1.7	85

#	Article	IF	CITATIONS
37	Thermodynamics of Formation, Reorganization, and Melting of Confined Nanometer-Sized Polymer Crystals. Macromolecules, 2003, 36, 1257-1260.	2.2	83
38	Liquidlike Morphological Transformations in Monolamellar Polymer Crystals. Physical Review Letters, 2001, 86, 5918-5921.	2.9	79
39	Improving adhesion via connector polymers to stabilize non-wetting liquid films. Europhysics Letters, 1996, 33, 29-34.	0.7	74
40	Aging of Thin Polymer Films Cast from a Near-Theta Solvent. Physical Review Letters, 2010, 105, 227801.	2.9	74
41	Real-Time Determination of the Slippage Length in Autophobic Polymer Dewetting. Physical Review Letters, 2000, 85, 2753-2756.	2.9	72
42	Structure and Dynamics of Structure Formation in Model Triarm Star Block Copolymers of Polystyrene, Poly(ethylene oxide), and Poly(ε-caprolactone). Macromolecules, 1998, 31, 7279-7290.	2.2	71
43	Nonequilibrium behavior of thin polymer films. Physical Review E, 2011, 83, 021804.	0.8	71
44	Switching Layer Stability in a Polymer Bilayer by Thickness Variation. Physical Review Letters, 2007, 98, 267802.	2.9	70
45	Covalent Functionalization by Cycloaddition Reactions of Pristine Defect-Free Graphene. ACS Nano, 2017, 11, 627-634.	7.3	69
46	Dewetting near the Glass Transition: Transition from a Capillary Force Dominated to a Dissipation Dominated Regime. Physical Review Letters, 2003, 91, 216101.	2.9	68
47	Investigations on the Low-Temperature Transitions and Time Effects of Branched Polyethylene by the Positron Lifetime Technique. Physica Status Solidi A, 1987, 104, 707-713.	1.7	67
48	Model experiments for a molecular understanding of polymer crystallization. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1869-1877.	2.4	65
49	Initial Stages of Polymer Interdiffusion Studied by Neutron Reflectometry. Europhysics Letters, 1991, 14, 451-456.	0.7	64
50	Deformation of a Glassy Polymer Film by Long-Range Intermolecular Forces. Langmuir, 1998, 14, 5667-5672.	1.6	62
51	Cellulose nanocrystals' production in near theoretical yields by 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4) – mediated hydrolysis. Carbohydrate Polymers, 2015, 117, 443-451.	5.1	62
52	Stable Dispersions of Highly Anisotropic Nanoparticles Formed by Cocrystallization of Enantiomeric Diblock Copolymers. Macromolecules, 2007, 40, 4037-4042.	2.2	61
53	NegativeExcess Interfacial Entropy between Free and End-Grafted Chemically Identical Polymers. Physical Review Letters, 2000, 85, 5599-5602.	2.9	60
54	Possible origin of thicknessâ€dependent deviations from bulk properties of thin polymer films. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 2544-2547.	2.4	60

#	Article	IF	CITATIONS
55	Effect of Shear Stress on Crystallization of Isotactic Polypropylene from a Structured Melt. Macromolecules, 2012, 45, 8933-8937.	2.2	60
56	X-ray reflectometer for study of polymer thin films and interfaces. Vacuum, 1990, 41, 1441-1444.	1.6	58
57	Influence of Progressive Cross-Linking on Dewetting of Polystyrene Thin Films. Langmuir, 2008, 24, 1884-1890.	1.6	54
58	Understanding crystal orientation in quasi-one-dimensional polymer systems. Soft Matter, 2008, 4, 540.	1.2	53
59	Morphologies of diblock copolymer thin films before and after crystallization. European Physical Journal E, 2000, 2, 319.	0.7	51
60	Friction Induced by Grafted Polymeric Chains. Langmuir, 2001, 17, 388-398.	1.6	51
61	Segmental Relaxations have Macroscopic Consequences in Glassy Polymer Films. Physical Review Letters, 2012, 109, 136102.	2.9	51
62	Self-assembled nanoparticle deposits formed at the contact line of evaporating micrometer-size droplets. Physical Review E, 2004, 69, 061609.	0.8	50
63	Morphologies of Polymer Crystals in Thin Films. , 2007, , 179-200.		47
64	Topographically induced self-deformation of the nuclei of cells: dependence on cell type and proposed mechanisms. Journal of Materials Science: Materials in Medicine, 2010, 21, 939-946.	1.7	47
65	Structure Formation of Polystyrene-block-poly(\hat{I}^3 -benzyl l-glutamate) in Thin Films. Macromolecules, 2005, 38, 7532-7535.	2.2	46
66	Morphological instabilities of polymer crystals. European Physical Journal E, 2008, 27, 63-71.	0.7	46
67	Triple-Shape Memory Materials via Thermoresponsive Behavior of Nanocrystalline Non-Isocyanate Polyhydroxyurethanes. Macromolecules, 2017, 50, 3598-3606.	2.2	46
68	Crystallization of block copolymers in restricted cylindrical geometries. Polymer, 2006, 47, 330-340.	1.8	44
69	Viscoelastic dewetting of constrained polymer thin films. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 3022-3030.	2.4	42
70	Flow-Induced Dendritic \hat{l}^2 -Form Isotactic Polypropylene Crystals in Thin Films. Macromolecules, 2016, 49, 5145-5151.	2.2	42
71	X-ray determination of the substrate modulation potential for a two-dimensional Rb liquid in graphite. Physical Review Letters, 1986, 57, 3191-3194.	2.9	41
72	THIN-FILM PATTERN FORMATION:The Artistic Side of Intermolecular Forces. , 1998, 282, 888-889.		41

#	Article	IF	Citations
73	Disentanglement Time of Polymers Determines the Onset of Rim Instabilities in Dewetting. Physical Review Letters, 2006, 96, 156105.	2.9	41
74	Evolution of Multilevel Order in Supramolecular Assemblies. Physical Review Letters, 2005, 94, 066103.	2.9	40
75	Viscoelastic Thin Polymer Films under Transient Residual Stresses: Two-Stage Dewetting on Soft Substrates. Physical Review Letters, 2008, 100, 178301.	2.9	38
76	How Molecules with Dipole Moments Enhance the Selectivity of Electrodes in Organic Solar Cells – A Combined Experimental and Theoretical Approach. Advanced Energy Materials, 2016, 6, 1600594.	10.2	38
77	Concepts of Nucleation in Polymer Crystallization. Crystals, 2021, 11, 304.	1.0	38
78	Nanoparticle ring formation in evaporating micron-size droplets. Applied Physics Letters, 2004, 84, 4774-4776.	1.5	37
79	Anisotropic charge transport in large single crystals of π-conjugated organic molecules. Nanoscale, 2014, 6, 4774.	2.8	37
80	Time regimes in polymer interdiffusion determined by marker movement. Macromolecules, 1991, 24, 1179-1184.	2.2	36
81	The Strength of Long-Range Forces across Thin Liquid Films. Journal of Colloid and Interface Science, 1999, 214, 126-128.	5.0	36
82	Correlating Polymer Crystals via Self-Induced Nucleation. Physical Review Letters, 2014, 112, 237801.	2.9	36
83	How Chain-Folding Crystal Growth Determines the Thermodynamic Stability of Polymer Crystals. Journal of Physical Chemistry B, 2016, 120, 566-571.	1.2	36
84	The use of X-ray and neutron reflectometry for the investigation of polymeric thin films. Physica B: Condensed Matter, 1991, 173, 35-42.	1.3	35
85	Massive Enhancement of Photoluminescence through Nanofilm Dewetting. ACS Nano, 2013, 7, 6658-6666.	7.3	35
86	Time Allowed for Equilibration Quantifies the Preparation Induced Nonequilibrium Behavior of Polymer Films. ACS Macro Letters, 2017, 6, 1296-1300.	2.3	35
87	Morphogenesis of lamellar polymer crystals. Europhysics Letters, 2001, 56, 755-761.	0.7	34
88	A thin film analog of the corneal mucus layer of the tear film: an enigmatic long range non-classical DLVO interaction in the breakup of thin polymer films. Colloids and Surfaces B: Biointerfaces, 1999, 14, 223-235.	2.5	33
89	Crystal nucleation enhanced at the diffuse interface of immiscible polymer blends. Physical Review E, 2008, 77, 061801.	0.8	33
90	Investigation of the interdiffusion between poly(methyl methacrylate) films by marker movement. Macromolecules, 1993, 26, 2134-2136.	2.2	31

#	Article	IF	CITATIONS
91	The fuzzy supersphere. Journal of Geometry and Physics, 1998, 28, 349-383.	0.7	31
92	Crystal growth rates of diblock copolymers in thin films: Influence of film thickness. European Physical Journal E, 2003, 12, 497-505.	0.7	31
93	Semicrystalline Macromolecular Design by Nitroxideâ€Mediated Polymerization. Macromolecular Chemistry and Physics, 2008, 209, 715-722.	1.1	31
94	Dewetting as an investigative tool for studying properties of thin polymer films. European Physical Journal: Special Topics, 2009, 166, 165-172.	1.2	31
95	Transient Cooperative Processes in Dewetting Polymer Melts. Physical Review Letters, 2016, 116, 088301.	2.9	31
96	Stabilization of Nuclei of Lamellar Polymer Crystals: Insights from a Comparison of the Hoffman–Weeks Line with the Crystallization Line. Macromolecules, 2016, 49, 2206-2215.	2.2	31
97	Destabilising effect of long-range forces in thin liquid films on wettable substrates. Europhysics Letters, 1999, 46, 512-518.	0.7	30
98	Self-destruction and dewetting of thin polymer films: the role of interfacial tensions. Journal of Physics Condensed Matter, 2003, 15, S331-S336.	0.7	30
99	Cooperative Rearrangements Leading to Long Range Order in Monolayers of Supramolecular Polymers. Physical Review Letters, 2007, 99, 086103.	2.9	30
100	Self-Assembly of CoPt3 Nanoparticle Rings Based on Phase-Separated Hexadecylamine Droplet Structure. Langmuir, 2003, 19, 9573-9576.	1.6	29
101	Elastomer polymer brushes on flat surface by bimolecular surface-initiated nitroxide mediated polymerization. Polymer, 2006, 47, 972-981.	1.8	29
102	Multi-curvature liquid meniscus in a nanochannel: Evidence of interplay between intermolecular and surface forces. Lab on A Chip, 2009, 9, 3255.	3.1	29
103	Molecularâ€Weightâ€Dependent Changes in Morphology of Solutionâ€Grown Polyethylene Single Crystals. Macromolecular Rapid Communications, 2015, 36, 181-189.	2.0	29
104	Functional Macromolecular Systems: Kinetic Pathways to Obtain Tailored Structures. Macromolecular Chemistry and Physics, 2019, 220, 1800334.	1.1	29
105	The interface between two strongly incompatible polymers: interfacial broadening and roughening near Tg. Langmuir, 1991, 7, 2438-2442.	1.6	28
106	Crystallization in ultra-thin polymer films. Thermochimica Acta, 2005, 432, 135-147.	1.2	28
107	Polymer crystallization under nano-confinement of droplets studied by molecular simulations. Faraday Discussions, 2009, 143, 129.	1.6	26
108	Reversibly Slowing Dewetting of Conjugated Polymers by Light. Macromolecules, 2013, 46, 2352-2356.	2.2	26

#	Article	IF	Citations
109	Systematic Control of Self-Seeding Crystallization Patterns of Poly(ethylene oxide) in Thin Films. Macromolecules, 2018, 51, 1626-1635.	2.2	26
110	Interaction of a Bacterial Endotoxin with Different Surfaces Investigated by in Situ Fourier Transform Infrared Attenuated Total Reflection Spectroscopy. Langmuir, 2002, 18, 5761-5771.	1.6	25
111	Controlled melting of individual, nano-meter-sized, polymer crystals confined in a block copolymer mesostructure. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 1312-1320.	2.4	25
112	Morphological Changes of Isotactic Polypropylene Crystals Grown in Thin Films. Macromolecules, 2017, 50, 6210-6217.	2.2	25
113	Growth Kinetics of Stacks of Lamellar Polymer Crystals. Macromolecules, 2018, 51, 8738-8745.	2.2	25
114	Segmental Rearrangements Relax Stresses in Nonequilibrated Polymer Films. ACS Macro Letters, 2019, 8, 646-650.	2.3	25
115	Are changes in morphology clear indicators for the glass transition in thin polymer films? Tentative ideas. European Physical Journal E, 2002, 8, 251-255.	0.7	24
116	Dewetting of thin polymer films at temperatures close to the glass transition. European Physical Journal E, 2003, 12, 133-138.	0.7	24
117	Influence of Substrate Properties on the Dewetting Dynamics of Viscoelastic Polymer Films. Journal of Adhesion, 2007, 83, 367-381.	1.8	24
118	Nickel Catalyst with a Hybrid P, N Ligand for Kumada Catalyst Transfer Polycondensation of Sterically Hindered Thiophenes. ACS Macro Letters, 2014, 3, 617-621.	2.3	24
119	Intrinsic Stresses in Thin Glassy Polymer Films Revealed by Crack Formation. Macromolecules, 2016, 49, 9060-9067.	2.2	24
120	Molecular-dynamics study of the temperature-dependent two-dimensional Rb liquid in graphite. Physical Review B, 1989, 39, 6111-6114.	1.1	23
121	Measurements of polymer diffusion over small distances. A check of reptation arguments. Journal De Physique II, 1991, 1, 659-671.	0.9	23
122	Self-Diffusion of "Hairy Rod" Molecules in Langmuir-Blodgett-Kuhn Multilayers Probed with Neutron and X-ray Reflectometry. Langmuir, 1994, 10, 3820-3826.	1.6	23
123	Oligonucleotide Nanostructured Surfaces: Effect on <i>Escherichia coli</i> Curli Expression. Macromolecular Bioscience, 2008, 8, 1161-1172.	2.1	23
124	Morphology of an asymmetric ethyleneoxide–butadiene di-block copolymer in bulk and thin films. Polymer, 2005, 46, 4868-4875.	1.8	22
125	The role of nonlinear friction in the dewetting of thin polymer films. Europhysics Letters, 2006, 73, 906-912.	0.7	22
126	Crystallization in diblock copolymer thin films at different degrees of supercooling. Physical Review E, 2009, 79, 041802.	0.8	22

#	Article	IF	Citations
127	Probing Properties of Polymers in Thin Films Via Dewetting. Advances in Polymer Science, 2012, , 29-63.	0.4	22
128	Highly <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math> -doped graphene generated through intercalated terbium atoms. Physical Review B, 2018, 97, .	1.1	22
129	Special issue on properties of thin polymer films. European Physical Journal E, 2002, 8, 101-101.	0.7	21
130	The influence of protic non-solvents present in the environment on structure formation of poly $(\hat{l}^3$ -benzyl-l-glutamate) in organic solvents. Soft Matter, 2008, 4, 993.	1.2	21
131	Controlling Polymer Crystallization Kinetics by Sample History. Macromolecular Chemistry and Physics, 2018, 219, 1700315.	1.1	21
132	Fully coupled thermomechanical behaviour of viscoelastic solids treated with finite elements. International Journal of Engineering Science, 1995, 33, 1037-1058.	2.7	20
133	Biocide squirting from an elastomeric tri-layer film. Nature Materials, 2004, 3, 311-315.	13.3	20
134	Formation of Periodically Modulated Polymer Crystals. Macromolecules, 2018, 51, 6119-6126.	2.2	20
135	The memorizing capacity of polymers. Journal of Chemical Physics, 2020, 152, 150901.	1.2	20
136	Relaxing nonequilibrated polymers in thin films at temperatures slightly above the glass transition. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 515-523.	2.4	19
137	Instability and droplet formation in evaporating thin films of a binary solution. Physical Review E, 2005, 71, 051603.	0.8	18
138	Tuning the Surface/Bulk Properties by the Control of the Amphiphilic Profile in Gradient Copolymer. Macromolecular Symposia, 2008, 267, 31-40.	0.4	18
139	Crystallization of Poly(\hat{I}^3 -benzyl <scp>I</scp> -glutamate) in Thin Film Solutions: Structure and Pattern Formation. Macromolecules, 2013, 46, 1470-1476.	2.2	18
140	Application of the 15N nuclear reaction technique for hydrogen analysis in polymer thin films. Nuclear Instruments & Methods in Physics Research B, 1992, 62, 513-520.	0.6	17
141	Morphogenesis and Nonequilibrium Pattern Formation in two-dimensional Polymer Crystallization. Phase Transitions, 2004, 77, 703-745.	0.6	17
142	Generating Long Supramolecular Pathways with a Continuous Density of States by Physically Linking Conjugated Molecules via Their End Groups. Journal of the American Chemical Society, 2013, 135, 5693-5698.	6.6	17
143	Annealing-induced periodic patterns in solution grown polymer single crystals. RSC Advances, 2015, 5, 12974-12980.	1.7	17
144	The Formation of Ordered Polymer Structures at Interfaces: AÂFew Intriguing Aspects. Advances in Polymer Science, 2005, , 1-36.	0.4	16

#	Article	IF	Citations
145	Automated two-point dixon screening for the evaluation of hepatic steatosis and siderosis: comparison with R2*-relaxometry and chemical shift-based sequences. European Radiology, 2015, 25, 1356-1365.	2.3	16
146	Differential cross section and analyzing power for elastic scattering of protons on 6Li below 2.2 MeV. Nuclear Physics A, 1995, 581, 93-106.	0.6	15
147	Thin Film Morphology in Triblock Terpolymers with One and Two Crystallizable Blocks. Macromolecules, 2007, 40, 5487-5496.	2.2	15
148	Toughening plastics by crack growth inhibition through unidirectionally deformed soft inclusions. Polymer, 2013, 54, 6019-6025.	1.8	15
149	Poly(3-(2,5-dioctylphenyl)thiophene) Synthesized by Direct Arylation Polycondensation: End Groups, Defects, and Crystallinity. Macromolecules, 2016, 49, 7230-7237.	2.2	15
150	Signatures of Melting and Recrystallization of a Bulky Substituted Poly(thiophene) Identified by Optical Spectroscopy. Macromolecules, 2017, 50, 6829-6839.	2.2	15
151	Determination of the Critical Size of Secondary Nuclei on the Lateral Growth Front of Lamellar Polymer Crystals. Macromolecules, 2019, 52, 7439-7447.	2.2	15
152	Thermodynamic Features of Perfectly Crystalline Poly(3-hexylthiophene) Revealed through Studies of Imperfect Crystals. Macromolecules, 2019, 52, 2487-2494.	2.2	15
153	Estimation of the Size of Critical Secondary Nuclei of Melt-Grown Poly(<scp>l</scp> -lactide) Lamellar Crystals. Macromolecules, 2020, 53, 3482-3492.	2.2	15
154	Enhancing nucleation and controlling crystal orientation by rubbing/scratching the surface of a thin polymer film. European Physical Journal E, 2009, 29, 383-389.	0.7	14
155	Swelling with a Near- $\hat{\Gamma}$ Solvent as a Means to Modify the Properties of Polymer Thin Films. Macromolecules, 2012, 45, 6196-6200.	2.2	14
156	Anisotropic Photophysical Properties of Highly Aligned Crystalline Structures of a Bulky Substituted Poly(thiophene). ACS Macro Letters, 2014, 3, 881-885.	2.3	14
157	High-Temperature Stability of Dewetting-Induced Thin Polyethylene Filaments. Macromolecules, 2015, 48, 1518-1523.	2.2	14
158	Tuning relaxation dynamics and mechanical properties of polymer films of identical thickness. Physical Review E, 2018, 97, 032507.	0.8	14
159	Formation of Needle-like Poly(3-hexylthiophene) Crystals from Metastable Solutions. Macromolecules, 2020, 53, 8303-8312.	2.2	14
160	Simulation of secondary nucleation of polymer crystallization via a model of microscopic kinetics. Chinese Chemical Letters, 2015, 26, 1105-1108.	4.8	13
161	Multiple Structural Transitions in Langmuir Monolayers of Charged Soft-Shell Nanoparticles. Langmuir, 2018, 34, 3909-3917.	1.6	13
162	Relation Between Charge Transport and the Number of Interconnected Lamellar Poly(3-Hexylthiophene) Crystals. Macromolecules, 2019, 52, 6088-6096.	2.2	13

#	Article	lF	Citations
163	Morphological Phase Transitions in Spontaneous Dewetting of Thin Films on Homogeneous and Heterogeneous Surfaces. Phase Transitions, 2002, 75, 377-399.	0.6	12
164	Validation of a Multiphase Model for the Macrosegregation and Primary Structure of High-Grade Steel Ingots. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2009, 40, 305-311.	1.0	12
165	Different surface sensing of the cell body and nucleus in healthy primary cells and in a cancerous cell line on nanogrooves. Biointerphases, 2015, 10, 031004.	0.6	12
166	An investigation on the heat dissipation in Zn-substituted magnetite nanoparticles, coated with citric acid and pluronic F127 for hyperthermia application. Physica B: Condensed Matter, 2022, 625, 413468.	1.3	12
167	TOREMA — A neutron reflectometer at JÃ⅓lich. Physica B: Condensed Matter, 1991, 173, 11-16.	1.3	11
168	Formation of silver islands on Langmuir-Blodgett films as investigated by x-ray reflectometry. Langmuir, 1992, 8, 1881-1884.	1.6	11
169	Evolution of Rim Instabilities in the Dewetting of Slipping Thin Polymer Films. Journal of Adhesion, 2005, 81, 381-395.	1.8	11
170	Branched Substituents Generate Improved Supramolecular Ordering in Physisorbed Molecular Assemblies. Journal of Physical Chemistry C, 2009, 113, 4955-4959.	1.5	11
171	Morphological changes during annealing of polyethylene nanocrystals. European Physical Journal E, 2012, 35, 1-12.	0.7	11
172	Linear and starâ€shaped POSS hybrid materials containing crystalline isotactic polystyrene chains. Journal of Polymer Science Part A, 2013, 51, 947-953.	2.5	11
173	Low loss optical waveguiding in large single crystals of a thiophene-based oligomer. Physical Chemistry Chemical Physics, 2017, 19, 15980-15987.	1.3	11
174	Controlling the Growth of Stacks of Correlated Lamellar Crystals of a Block Copolymer. Macromolecules, 2019, 52, 9665-9671.	2.2	11
175	Energy transport and light propagation mechanisms in organic single crystals. Journal of Chemical Physics, 2020, 153, 144202.	1.2	11
176	A neutron reflectometer for the investigation of solid and liquid interfaces. Physica B: Condensed Matter, 1989, 156-157, 564-566.	1.3	10
177	Formation of low-dimensional close-packed arrays of nanoparticles in a dewetting water layer. Physical Review E, 2007, 76, 041609.	0.8	10
178	A nucleation mechanism leading to stacking of lamellar crystals in polymer thin films. Polymer International, 2020, 69, 1058-1065.	1.6	10
179	Formation of Stacked Three-Dimensional Polymer "Single Crystals― Macromolecules, 2021, 54, 4918-4925.	2.2	10
180	What determines static friction and controls the transition to sliding?. Tribology Letters, 1995, 1, 1-12.	1.2	9

#	Article	lF	CITATIONS
181	Polymer crystallization on pre-patterned substrates. Journal of Chemical Physics, 2003, 118, 784-791.	1.2	9
182	Self-assembled treelike patterns from an evaporating binary solution. Physical Review E, 2006, 74, 061603.	0.8	9
183	Treelike branched structures formed in dewetting thin films of a binary solution. Applied Physics Letters, 2006, 89, 133126.	1.5	9
184	Surface-induced breakout crystallization in cylinder-forming P(I-b-EO) diblock copolymer thin films. European Physical Journal E, 2011, 34, 7.	0.7	9
185	Tuning Morphologies of Langmuir Polymer Films Through Controlled Relaxations of Non-Equilibrium States. Langmuir, 2015, 31, 6426-6435.	1.6	9
186	Semicrystalline Long-Chain Polyphosphoesters from Polyesterification. Macromolecules, 2017, 50, 2706-2713.	2.2	9
187	Dewetting Rheology for Determining Viscoelastic Properties of Nonequilibrated Thin Polymer Films. Macromolecules, 2019, 52, 7894-7903.	2.2	9
188	Fully Isotactic Poly(<i>p</i> -methylstyrene): Precise Synthesis via Catalytic Polymerization and Crystallization Studies. Macromolecules, 2019, 52, 4839-4846.	2.2	9
189	Following isothermal and non-isothermal crystallization of poly(3-hexylthiophene) thin films by UV–vis spectroscopy. Polymer, 2020, 210, 122959.	1.8	9
190	Pattern formation and ordering in thin films of crystallisable block copolymers. Macromolecular Symposia, 2002, 183, 173-178.	0.4	8
191	Consequences of Varying Adsorption Strength and Adding Steric Hindrance on Self-Assembly of Supramolecular Polymers on Carbon Substrates. Journal of Physical Chemistry C, 2012, 116, 21594-21600.	1.5	8
192	Controlling the pore size in conjugated polymer films <i>via</i> crystallization-driven phase separation. Soft Matter, 2019, 15, 2981-2989.	1.2	8
193	Thermodynamic features of perfectly crystalline poly(3â€hexylthiophene) based on Flory's relation. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 431-437.	2.4	8
194	Formation of Asymmetric Leaf-Shaped Crystals in Ultrathin Films of Oriented Polyethylene Molecules Resulting from High-Temperature Relaxation and Recrystallization. Macromolecules, 2020, 53, 346-354.	2.2	8
195	Large quantum efficiency enhancements of pristine conjugated polymer MEH-PPV by interlayer polymer diffusion. Polymer, 2020, 204, 122753.	1.8	8
196	Heat dissipation in Sm3+ and Zn2+ co-substituted magnetite (Zn0.1SmxFe2.9-xO4) nanoparticles coated with citric acid and pluronic F127 for hyperthermia application. Scientific Reports, 2021, 11, 16795.	1.6	8
197	Translating molecular relaxations in non-equilibrated polymer melts into lifting macroscopic loads. Physical Review Materials, 2020, 4, .	0.9	8
198	Summary and conclusions: Progress in our understanding of instabilities in thin films. European Physical Journal E, 2003, 12, 465-468.	0.7	7

#	Article	IF	CITATIONS
199	Cardiac MR in Robotic Heart Surgery for Preoperative Identification of the Target Vessel and Precise Port Placement - A Theoretical Model. Thoracic and Cardiovascular Surgeon, 2003, 51, 204-210.	0.4	7
200	On the mechanics of rim instabilities in viscoelastic polymer thin films. European Physical Journal: Special Topics, 2009, 166, 55-61.	1.2	7
201	Network swelling competing with translational entropy in autophobic polymer dewetting. Europhysics Letters, 2010, 90, 26008.	0.7	7
202	Processes of Ordered Structure Formation in Polypeptide Thin Film Solutions. Advances in Polymer Science, 2010, , 117-149.	0.4	7
203	Accelerating Dewetting on Deformable Substrates by Adding a Liquid Underlayer. Langmuir, 2010, 26, 7270-7276.	1.6	7
204	Conductance fluctuations in metal-nanoparticle-metal junctions. Physical Review B, 2010, 82, .	1.1	7
205	Generating Nanoscopic Patterns in Conductivity within a Poly(3-hexylthiophene) Crystal via Bias-Controlled Scanning Probe Nanolithography. Macromolecules, 2018, 51, 7692-7698.	2.2	7
206	A structural fibrillation parameter from small angle X-ray scattering to quantify pulp refining. Cellulose, 2019, 26, 4265-4277.	2.4	7
207	Changes in Surface Free Energy and Surface Conductivity of Carbon Nanotube/Polyimide Nanocomposite Films Induced by UV Irradiation. ACS Applied Materials & Interfaces, 2021, 13, 24218-24227.	4.0	7
208	Primary Nucleation in Metastable Solutions of Poly(3-hexylthiophene). Macromolecules, 2022, 55, 3325-3334.	2.2	7
209	Graded differential geometry of graded matrix algebras. Journal of Mathematical Physics, 1999, 40, 6609-6625.	0.5	6
210	Friction of an elastomer sliding on polymeric model surfaces. Tribology Letters, 2000, 8, 249-253.	1.2	6
211	Oriented crystallization of isotactic polystyrene in films prepared by friction transfer. Polymer, 2009, 50, 3724-3729.	1.8	6
212	Reversible Nucleation, Growth, and Dissolution of Poly(\hat{l}^3 -benzyl <scp> </scp> -glutamate) Hexagonal Columnar Liquid Crystals by Addition and Removal of a Nonsolvent. Crystal Growth and Design, 2013, 13, 4490-4494.	1.4	6
213	Self-assembly behavior of a rod-like polypeptide at the air-water interface. Polymer, 2016, 107, 379-386.	1.8	6
214	Revealing Order and Disorder in Films and Single Crystals of a Thiophene-Based Oligomer by Optical Spectroscopy. ACS Photonics, 2016, 3, 2315-2323.	3.2	6
215	Controlling Nucleation in Quasi-Two-Dimensional Langmuir Poly(<scp> </scp> -lactide) Films through Variation of the Rate of Compression. Langmuir, 2019, 35, 6129-6136.	1.6	6
216	Dewetting-Induced Alignment and Ordering of Cylindrical Mesophases in Thin Block Copolymer Films. Macromolecules, 2020, 53, 9631-9640.	2.2	6

#	Article	IF	Citations
217	Self-Seeding Procedure for Obtaining Stacked Block Copolymer Lamellar Crystals in Solution. Polymers, 2021, 13, 1676.	2.0	6
218	Crystallization of Polymers in Thin Films: Model Experiments. Lecture Notes in Physics, 2003, , 131-152.	0.3	6
219	Determining Entanglement Molar Mass of Glassy Polyphenylenes Using Mechanochromic Molecular Springs. ACS Macro Letters, 2022, 11, 760-765.	2.3	6
220	X-ray and neutron reflectometry for the investigation of polymer diffusion. Fresenius' Journal of Analytical Chemistry, 1991, 341, 284-288.	1.5	5
221	Computer-simulation studies of the melting transition of Rb and K intercalated in graphite. Physical Review B, 1993, 48, 1853-1857.	1.1	5
222	Influence of clutter on human target acquisition. , 1993, , .		5
223	Editorial on "Focus Point― Unstable Thin Films. European Physical Journal E, 2003, 12, 359-360.	0.7	5
224	Bilayer formation in thin films of a binary solution. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 353, 198-204.	0.9	5
225	Comment on "Indications of energetic consequences of decoherence at short times for scattering from open quantum systems―[AIP Advances 1, 022118 (2011)]. AIP Advances, 2011, 1, .	0.6	5
226	Comment on "High-energy neutron scattering from hydrogen using a direct geometry spectrometer― Physical Review B, 2011, 84, .	1.1	5
227	Structure Formation in Langmuir Peptide Films As Revealed from Coarse-Grained Molecular Dynamics Simulations. Langmuir, 2017, 33, 6492-6502.	1.6	5
228	Semiâ€Crystalline Poly(thioether) Prepared by Visibleâ€Lightâ€Induced Organocatalyzed Thiolâ€ene Polymerization in Emulsion. Macromolecular Rapid Communications, 2022, 43, e2100740.	2.0	5
229	A Generic Model for Growth and Morphogenesis of Polymer Crystals in Two Dimensions. Lecture Notes in Physics, 2003, , 153-176.	0.3	4
230	Self-assembled patterns from evaporating layered fluids. Journal of Physics Condensed Matter, 2009, 21, 264015.	0.7	4
231	Tunneling spectroscopy measurements on hydrogen-bonded supramolecular polymers. Nanoscale, 2014, 6, 8250-8256.	2.8	4
232	Variation of the contact resistance with electric current for gold electrodes on a squaraine single crystal. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2738-2746.	0.8	4
233	Assembling semiconducting molecules by covalent attachment to a lamellar crystalline polymer substrate. Beilstein Journal of Nanotechnology, 2016, 7, 784-798.	1.5	4
234	Influence of interfacial trap states on injecting and extracting of charges across a metal–organic interface. Journal Physics D: Applied Physics, 2016, 49, 135306.	1.3	4

#	Article	IF	CITATIONS
235	Solvent-controlled reversible switching between adsorbed self-assembled nanoribbons and nanotubes. Nanoscale, 2017, 9, 3293-3303.	2.8	4
236	Exploring Pathways to Equilibrate Langmuir Polymer Films. Langmuir, 2020, 36, 8184-8192.	1.6	4
237	Continuous Fused Deposition Modelling of Architectural Envelopes Based on the Shell Formation of Molluscs: A Research Review. Biologically-inspired Systems, 2016, , 243-260.	0.4	4
238	The Solid-Like State of a Confined Liquid Lubricant: Deformation and Time Effects., 1996,, 119-138.		4
239	Short-time dynamics of polymer diffusion across an interface. , 1993, , 93-96.		3
240	The crucial role of cadmium acetate-induced conformational restriction in microscopic structure and stability of polystyrene-block-polyvinyl pyridine thin films. Polymer, 2014, 55, 5801-5810.	1.8	3
241	History Dependent Temporal Changes of Properties of Thin Polymer Films. Soft and Biological Matter, 2015, , 3-23.	0.3	3
242	Consequences of a Single Double Bond within a Side Group on the Ordering of Supramolecular Polymers. Journal of Physical Chemistry C, 2015, 119, 22596-22603.	1.5	3
243	A novel interferometric method for the study of the viscoelastic properties of ultra-thin polymer films determined from nanobubble inflation. Review of Scientific Instruments, 2017, 88, 093901.	0.6	3
244	A new growth process for crystalline ultra-thin layers of conjugated oligomers used in field-effect transistor applications. Applied Surface Science, 2021, 539, 148024.	3.1	3
245	Successive melting and crystallization of poly(3-hexylthiophene) in the melt-memory domain versus isotropic melt domain. Journal of Materials Science, 2021, 56, 19723-19737.	1.7	3
246	The Effect of Short and Long Range Interactions on Break up and Dewetting of Thin Polymer Films. Materials Research Society Symposia Proceedings, 1991, 248, 393.	0.1	2
247	Molecular-dynamics study of two-dimensional liquid K intercalated in graphite. Physical Review B, 1991, 43, 6739-6741.	1.1	2
248	Spurious indications of energetic consequences of decoherence at short times for scattering from open quantum systems. AIP Advances, 2012, 2, .	0.6	2
249	Self-Interference of Exciton Emission in Organic Single Crystals Visualized by Energy-Momentum Spectroscopy. ACS Omega, 2018, 3, 6728-6736.	1.6	2
250	Self-Assembly of Oligo(phenylene-thiophene)s on Monolayer Graphene: Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2019, 123, 859-867.	1.5	2
251	Continuous Illumination of a Conjugated Polymer Causes Strong Enhancement of Photoluminescence. Journal of Physical Chemistry B, 2021, 125, 5636-5644.	1.2	2
252	Illumination of Conjugated Polymers Reduces the Nucleation Probability and Slows Down the Crystal Growth Rate. Macromolecules, 2021, 54, 11478-11485.	2.2	2

#	Article	IF	CITATIONS
253	The memory of thin polymer films generated by spin coating. European Physical Journal E, 2022, 45, .	0.7	2
254	In Situ Dissolution and Swelling of Confined Lamellar Polymer Crystals through Exposure to Humid Air. Macromolecules, 0, , .	2.2	2
255	Effect of current sharing on the stability of transposed superconductors subject to rapid heat pulses. IEEE Transactions on Magnetics, 1983, 19, 428-431.	1.2	1
256	SIMPLE FUZZY (SUPER)SPACES. International Journal of Modern Physics B, 2000, 14, 2467-2470.	1.0	1
257	Chances and challenges in Europe. Nature Materials, 2003, 2, 67-69.	13.3	1
258	Deriving Molecular Parameters of Interfaces Between Chemically Identical Polymers from Macroscopically Observed Phenomena. Macromolecular Symposia, 2005, 229, 81-92.	0.4	1
259	Reply: Discussion of problems of non-equilibrium thermodynamics of polymers. Thermochimica Acta, 2005, 432, 153-155.	1.2	1
260	Charge transport in nanoparticle chains influenced by stabilizer molecules. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1107-1114.	0.8	1
261	From Holes to Drops to Toroids: Conditions for the Transcription of Surface Patterns into Three-Dimensional Morphologies via Rim Instabilities in the Course of Dewetting. , 2015, , 23-42.		1
262	When hole extraction determines charge transfer across metal-organic-metal structure. Europhysics Letters, 2016, 113, 57002.	0.7	1
263	Tunneling of charge carriers across a gold–squaraine interface. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1493-1498.	0.9	1
264	Optical nanoscopy characterization of nanofilms. Journal of Physics: Conference Series, 2017, 780, 012003.	0.3	1
265	Rheological Properties of Blends of Isotactic Polystyrene–Isotactic Poly(<i>para</i> films Derived from a Comparative Dewetting Study. Macromolecules, 2020, 53, 9122-9130.	2.2	1
266	Controlled Switching from the Growth of Monolamellar Polymer Crystals to the Formation of Stacks of Uniquely Oriented Lamellae. Macromolecules, 2021, 54, 8135-8142.	2.2	1
267	Visualizing Properties of Polymers at Interfaces. , 2008, , 1243-1292.		1
268	Structuring the Surface of Crystallizable Polymers with an AFM Tip. Nanoscience and Technology, 2010, , 833-866.	1.5	1
269	Microscopic calculation of dynamical correlations in twoâ€dimensional quantum antiferromagnets at low temperature (abstract). Journal of Applied Physics, 1990, 67, 5761-5761.	1.1	0
270	Hydrogen potential in \hat{l}^2 -V2H studied by deep inelastic neutron scattering. Physica B: Condensed Matter, 1992, 180-181, 651-652.	1.3	0

#	Article	IF	CITATIONS
271	The Effect of Adhesion on the Rheological and Frictional Behavior of a Confined Lubricant Film. Journal of Adhesion, 1996, 57, 55-64.	1.8	O
272	Interaction of two different types of membrane proteins with model membranes investigated by FTIR ATR spectroscopy. , $1998, , .$		0
273	Noncommutative Supergeometry of Graded Matrix Algebras. Lecture Notes in Physics, 2000, , 386-386.	0.3	0
274	Call for papers Special issue on "Properties of thin polymer films― European Physical Journal E, 2001, 5, 509-509.	0.7	0
275	Call for papers Special issue on "Properties of thin polymer films― European Physical Journal E, 2001, 5, 389-389.	0.7	0
276	In situ FTIR ATR spectroscopic study of the interaction of immobilized human tumor necrosis factor-\$alpha; with a monoclonal antibody in aqueous environment. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1699, 253-261.	1.1	0
277	Self-Assembly of Nanoparticle Ring Patterns. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2006, 61, 99-102.	0.7	0
278	Spreading of Liquids on Substrates. , 2011, , 93-103.		0
279	Stability of Thin Liquid Films. , 2013, , .		0
280	Macromol. Rapid Commun. 2/2015. Macromolecular Rapid Communications, 2015, 36, 180-180.	2.0	0
281	Thermodynamic Origin of Multilayer Structures in Langmuir Polymer Films. Langmuir, 2017, 33, 11399-11405.	1.6	0
282	Blocking of injected holes at the charge extracting interface. Journal of Physics Condensed Matter, 2017, 29, 025001.	0.7	0
283	Spreading of Liquids on Substrates. , 2017, , 1-13.		0
284	Spreading of Liquids on Substrates. , 2018, , 101-113.		0
285	Photoelectronic properties of composite films based on conductive polymer PIDT-BT and single-walled carbon nanotubes. SN Applied Sciences, 2019, 1 , 1 .	1.5	0
286	Measurements of periodically perturbed dewetting force fields and their consequences on the symmetry of the resulting patterns. Scientific Reports, 2021, 11, 13149.	1.6	0
287	A SURFACE CHEMICAL ANALOG OF THE TEAR FILM BREAKUP ON THE CORNEA. , 2000, , .		0
288	Non-invasive approach to coronary heart disease. , 2002, , 887-889.		0

#	Article	IF	CITATIONS
289	polymer Studies. , 1999, , 305-323.		0
290	Editorial on the Special Topic "Polymer Crystallization― Crystals, 2022, 12, 618.	1.0	0